The role of microorganisms in the bentonite barrier of high-level radioactive waste repositories

Nicole Matschiavelli, Magdalena Dressler, Tom Neubert, Sindy Kluge, Ariette Schierz, Andrea Cherkouk
How to deal with all the waste?

We produce 300 million tonnes of toxic waste per year (poisonous chemicals, medical waste, coal dust)

- **97,000 tonnes of nuclear waste** (0.03 % of all toxic waste)
 - LLW (Low Level Waste)
 - ILW (Intermediate Level Waste)
 - HLW (High Level Waste) ⇒ **12,000 tonnes HLW** (highly radiotoxic for 200,000 years!)

The multi-barrier system for the storage of HLW

1) container with HLW

2) bentonite

3) host rock

- high swelling capacity
- low hydraulic conductivity

natural barrier for disposal of high-level radioactive waste

Active microorganisms at the interface in between the container and the bentonite?
Looking for life…

Life in simple words:

electron transport from an electron donor to an electron acceptor!
Thermodynamics

E_h

e$^-$ donors in bentonites

organic C H$_2$ H$_2$S NH$_4^+$ Fe$^{2+}$ Mn$^{2+}$ CH$_4$ CO

e$^-$ acceptors in bentonites

O$_2$ Mn$^{4+}$ Fe$^{3+}$ NO$_3^-$ SO$_4^{2-}$ S0 CO$_2$

Formation of metabolites due to anaerobic, microbial metabolism

CH$_4$ H$_2$S Fe$^{2+}$ organic acids

Properties of materials ?

Performance ?

H_2O O_2 C-source pH T
A tiny, microbial world – microcosms

Addition of energy-sources
(Lactate, Acetate, Metals and/or H₂)

processed Bentonite

anaerobic, synthetic pore water solution

No additional inoculation of microorganisms

incubation of microcosms at defined temperatures

30°C 60°C
37°C 90°C

days/months/years

[2]: Bentonite B25 powder was provided by Stephan Kaufhold (BGR, Hannover, Germany)
Analyzing microcosms

- **Oxygen (O₂)**
- **Redox potential (Eh)**
- **pH**
- **Iron (Fe(II)/Fe(III))**
- **Acetate/Lactate**
- **Gas**
- **Sulfate (SO₄²⁻)**
- **Corrosion**

Isolation of DNA and sequencing via MiSeq Illumina
Somehow something happens…

Formation of:
- Gases
- Fractures
- Precipitates

Analyses of geochemical parameters (30 °C)

H₂

- **Eₜ [mV]**
- **pH**

Lactate (10 mM)

- **Eₜ [mV]**
- **pH**

Metabolites [mM]

- **Fe(II)**
- **Fe(III)**
- **SO₄²⁻**
- **Acetate**
- **Lactate**

H₂ ⇌ **SO₄²⁻**

2**H⁺** ⇌ **H₂S**

- **d = 238**
- **d = 181**

Analysis of microbial diversity (30 °C)

Dominance of spore-forming, sulfate-reducing bacteria!
– resistant to harsh conditions for many years –

The relevance of thermophiles!?

Microbial diversity in bentonite microcosms after 323 days incubation at 60 °C

Thermophiles dominate, independent from the presence of substrates!
Effect of metabolic activity on the tested materials?

Analyzing the microbial influence on canister materials (I)

[5]: Cast iron and copper plates were provided by Artur Meleshyn (GRS, Braunschweig, Germany)

Influence on corrosion?

- Cast iron
- Copper
- Hydrogen (H_2)
- Lactate

$$
\begin{align*}
\text{Cast iron} & \quad \text{c} \\
\text{Copper} & \quad \text{c} \\
\text{Hydrogen} & \quad H_2 \\
\text{Lactate} & \quad \text{Lactate}
\end{align*}
$$
Analyzing the microbial influence on canister materials (II)

- Incubated with H\textsubscript{2} for 30 days at 37 °C.

- Cast iron-containing bentonite microcosms

- Light microscopic surface analysis of incubated cast iron plates

- Isolation of new sulfate-reducing and spore-forming *Desulfotomaculum* spec. from cast iron containing microcosms.

- Detailed analysis by introducing this bacterium into (heavy-) metal-containing microcosms

Summary

Thank You!

- Andrea Cherkouk
- Sindy Kluge
- Magdalena Dressler
- Tom Neubert
- Falk Lehmann
- Carola Eckardt
- Sabrina Beutner

- Thuro Arnold (HZDR)

- Stephan Kaufhold (BGR, Hannover)
- Armin Ziegenaus (IMERYS, Landshut)

- Artur Meleshyn (GRS, Braunschweig)

- Daniel Standhaft, Carolin Podlech, Laurence Warr, Georg Grathoff (University of Greifswald)

- Karsten Pedersen (MICANS, Sweden)

Euratom research and training programme 2014-2018 (No. 661880)

Federal Ministry for Economic Affairs (No: 02E11344B)