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@ Challenges UNIVERSITAT

B Complex landslide processes can be successfully
back-calculated with the r.avaflow computational tool
(https://www.avaflow.org) Mmergiietal. (2017, GMD), Pudasaini and Mergili (2019, JGR ES)

Year Place Description Reference
2012 Santa Cruz Valley Multi-lake outburst flood involving three lakes and the Mergili et al. (2018,
(Cordillera Blanca, Pert) entrainment of a large amount of sediment, starting froma  ESPL)
landslide from a moraine
1962 and 1970 Huascaran Debris-mud-ice avalanches starting as rock-ice falls, Mergili et al. (2018,
(Cordillera Blanca, Peru) entrainment of snow, ice, and debris, extremely high Geomorphology)
velocity and runout distance
1941 Quilcay Valley Sudden drainage of Lake Palcacocha (breach of moraine Mergili et al. (2020,
(Cordillera Blanca, Pert) dam), complex flow downstream leading to the drainage of HESS)

another lake and excessive channel erosion
2017 Piz Cengalo — Bondo Initial rock slide-rock fall, entrainment and melting of glacier Mergili et al. (2020,

(Switzerland) ice, resulting rock avalanche evolving into debris flow NHESS)
1967 Steinholtsdalur Rock slide onto a glacier, entrainment of ice and drainage of Gylfadottir et al.
(Iceland) proglacial lake, distal flood (2019, EGU)

Hm However, the transfer to forward simulations or
predictive simulations remains a challenge

Challenges
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Analysis of back-calculated results of many
case studies

Differentiation by Differentiation by the
geomorphological characteristics of the
characteristics landslide itself

Solutions?
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@KU Static parameter ranges .. u

Class Lo} Cap Cee Ce (d) Ce (i)
A  Steep mountain slope, 2,13,16, 0.01% 0.1, 0-0.00025,
fall-like movement of 20 0.2 0.0005

rock and/or ice
B Rock(-ice) avalanche 5,6,6,8 0.005% 0-0.00025, bWS 2
over glacier 0.01,002  0.001, 0
0.0005
C Rock(-ice) avalanche 5-8,10  0.005* o—o.% ‘}G’— 6.5

over debris slope

D Channelized high- 2-5 0.001* 0.00025
energy flow of debris,
mud, and/or ice e A
E Channelized debris flow 8-20 0, 0.004, -6.75, -7.15
1 ! 005* 0.01 0.0005
F Channelized wa \‘ !zo 0, 0.04, 0, 0.004, -7.15
domir@l‘ 12,7,16 0.005*% 0.01 0.0005
11)
G Flowth‘Jgh narrow 0.04 0.5
gorge
H Flow spreading on 8 0.001* 0.00025
debris cone
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@ Dynamic parameterization
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Huascaran 1962 Huascaran 1970

Dynamic parameterization
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Conclusions and perspectives UNNERSWAT"

m First results are promising — both the static and the
dynamic parameterization of predictive simulations
yield plausible results for the two test cases

B Parameter constraints and function for dynamic
adaptation of friction have to be refined

B More back-calculations are necessary to make the
guiding parameters more reliable

B Testing, testing, testing ...

Conclusions

7 May 2020 | EGU General Assembly Mergili and Pudasaini, Predictive simulation of complex high-mountain landslide cascades 9



ENGAGE (©) m "

Geomorphological Systems UNIVERSITAT m.

& Risk Research UMWELTWANDEL

https://www.anden.at

Ranrahlrca

Thank You for your participation!

martin.merqili@boku.ac.at

This work was conducted as a follow-up to the international cooperation project “A GIS simulation model for avalanche and debris flows (avaflow)”
supported by the German Research Foundation (DFG, project number PU 386/3-1) and the Austrian Science Fund (FWF, project number | 1600-N30).
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