Key points: Impact of the Ambae, Raikoke and Ulawun eruptions on the stratospheric aerosol layer and climate

Corinna Kloss\(^1\), Pasquale Sellitto\(^2\), Bernard Legras\(^3\), Jean-Paul Vernier\(^4,5\), Fabrice Jégou\(^1\), M. Venkat Ratnam\(^6\), B. Suneel Kumar\(^7\), B. Lakshmi Madhavan\(^6\), Maxim Eremenko\(^2\), Gwenaël Berthet\(^1\)

1: CNRS, LPC2E, Orléans, France; 2: LISA, CNRS, Paris, France; 3: LMD, CNRS, Paris, France; 4: SSA, Hampton, USA; 5: NASA, Hampton, USA; 6: NARL, Gedanki, India; 7: TIFR, Hyderabad, India
Ambae: Injection altitude estimation (HIMAWARI, ERA5)

5th of April 2018

- Estimated injection altitude at 17 km as the lower bound

27th of July 2018

- Injection altitude at 14 or 18 km

Please see: https://www.essoar.org/doi/10.1002/essoar.10501617.1
Ambae: Distribution in the lower stratosphere (OMPS)

- The second eruption had a stronger impact on the lower stratosphere.
- It was distributed to both hemispheres (within the lower branch of the Brewer-Dobson-Circulation).
- **Red point**: area for comparison with in situ measurements on the next slide.

Please see: https://www.essoar.org/doi/10.1002/essoar.10501617.1
Ambae: In situ observations (lidar, POPS, OMPS)

- Enhanced aerosol extinction and concentration observed between 16 and 22 km altitude in mid-July
- One year later: still enhanced aerosols in the lower stratosphere (also within the anticyclone of the Asian monsoon) → ATAL masked

POPS measurements (aerosol concentration, particle sizes 0.15-0.18μm) during the BATAL campaign in Jul 2019 in Hyderabad, India

Lidar measurements (Back Scatter Ratio) in Jan/Feb 2019 in Gedanki, India

→ In situ observations confirm temporal evolution of the Ambae plume

Please see: https://www.essoar.org/doi/10.1002/essoar.10501617.1
Ambae: Aerosol Optical Depth/ climate impact (UVSPEC radiative forcing calculations with SAGE III/ISS observations)

AOD and radiative forcing values calculated with SAGE III/ISS data for time frames chosen from OMPS Aerosol Extinction values in the lower stratosphere (indicated with dashed circles)

Please see: https://www.essoar.org/doi/10.1002/essoar.10501617.1
Early development of the Raikoke SO2 plume: IASI
BC Fires, Ambae, Raikoke and Ulawun: stratospheric AOD (OMPS, SAGE III/ISS and LOAC in situ)

So far:

- OMPS and SAGE III/ISS show a very similar AOD evolution (all 4 events show a visible increase in sAOD).
- Highest sAOD following the Raikoke eruption (June 2019), with an increase by a factor of ~3.
- SAGE III/ISS sAOD values are around double as high as OMPS values (missing values above the tropopause).
- LOAC balloon-borne measurements (in France) show increased sAOD values following the Raikoke eruption.

Note: However, only data up to 60°N.
Study is in progress... This is what we are working on:

• Overall global, stratospheric distribution of the Raikoke and Ulawun plumes.
• Comparison of the observational results with a Raikoke/ Ulawun simulation with WACCM
• An additional study of the ‘rough’ transport of the Raikoke and Ulawun plumes with a passive tracer (CLaMS)
• Radiative forcing calculations (as done for the Ambae eruption)

I’m happy to answer your questions.

You can also contact me via email: corinna.kloss@cnrs-orleans.fr
For detailed questions on the radiative forcing calculations, you can contact Pasquale.Sellitto@lisa.u-pec.fr