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Introduction

What | would have talked about...(roughly)

Hypothesis
It matters how ozone is represented in climate model simulations.

Interactive atmospheric chemistry schemes to-the-rescue?
A good but typically computationally expensive option.

A suggestion for an alternative
Machine learning parameterizations of stratospheric ozone.

Throughout my slides, | mention and link to some relevant studies
(you can hover over citations and click to be re-directed).
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Introduction

Recap: ozone - a multifunctional molecule
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* Ozone layer is key to life on Earth.

» Greenhouse gas.

« Air pollutant in the troposphere.

NASA: ozone hole above Antarctica
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The evolution of climate modelling

Growth of Climate Modeling

Dust/Sea Spray/Carbon Aerosols

Interactive Vegetation
ic/Land Surface/ i Coupled Climate Model

Sulfate Aerosol
Ocean Sea lce
Biogeochemical Cycles

Carbon Cycle

Ice Sheet

www2.ucar.edu
* Many climate models still do not include atmospheric chemistry schemes.
+ Often there is no well-defined way to represent ozone otherwise.

» Key issue: atmospheric chemistry can slow down models substantially.
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Introduction

What if your model does not include ozone chemistry?

A standard go-to solution is to simply use an ozone field from
observations, or other chemistry-climate model simulations.

This can be an effective non-interactive set-up for historical and
RCP-type scenarios for which standardized ozone climatologies
have been provided, see e.g. Cionni et al. (2011).

For many other forcing scenarios, including paleo-climate or
abrupt-4xCO, forcings, such ozone climatologies are typically
not provided — ozone is often prescribed in highly unrealistic
ways, especially in the stratosphere and upper troposphere.
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Example set-up for an interactive chemistry-climate model

HadGEMS3
AO-UKCA
Configuration

A global climate model coupled to an interactive stratospheric chemistry scheme
See also Hewitt et al., Geosci. Model Dev., 4(2):223-253, 2011 and www.ukca.ac.uk

Peer Nowack Machine learning parameterizations for ozone 5/16


www.ukca.ac.uk

Introduction
Results
Conclusions

Example for a non-interactive climate model configuration

Fixed ozone climatology

Ozone varies seasonally,
but not with internal
variability or forcing
HadGEMS3
AO-UKCA
Configuration

A global climate model eeupled-to-an-interactive-stratosphericchemistry-scheme

See also Hewitt et al., Geosci. Model Dev., 4(2):223-253, 2011 and www.ukca.ac.uk
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The representation of ozone matters (l)

a) WACCM b) GFDL ¢) SOCOL
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The implicit assumption of ‘constant’ ozone in many simulations is
not correct, see above changes in ozone in abrupt-4xCO, scenarios
for three chemistry-climate models; cf. Chiodo & Polvani (2019):
Ozone | in the tropical upper troposphere/lower stratosphere
(UTLS) and 1 elsewhere. Changes in ozone, in turn, can feedback
on stratospheric water vapour, cirrus clouds, the jet streams etc.
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https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-19-0086.1?mobileUi=0
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The representation of ozone matters (ll)

For example in 4xCO, and solar forcing simulations

(e.g. Li et al. Clim. Dyn. 2013, Dietmueller et al. JGR 2014, Nowack et al. NCC
2014/JGR 2018, Muthers et al. GMD 2014, Chiodo & Polvani J. Clim. 2016)

(e.g. Haigh Science 1996, Rind et al. JGR 2014, Chiodo & Polvani GRL 2017,
Muthers et al. ESD 2016, Nowack et al. GRL 2017, Silverman et al. ACP 2018)

and paleo-climate simulations

(e.g. Heinemann MPI 2009, Noda JGR 2017 and 2018)
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Results

Can we implement a faster ozone parameterization?
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https://iopscience.iop.org/article/10.1088/1748-9326/aae2be

Results

The machine learning parameterization shows potential
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Machine learning
Fit regression function Y’ =f(X)

- linear: Ridge/Lasso regression

- nonlinear: Random Forest, Neural Network

- cross-validation on training set

Apply mapping

Ozone mixing ratio
in grid cell k
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Results

The machine learning parameterization shows potential

Model
Input features . .
. Machine learning
X Normalization Apply mapping
t-1 Fit regression function Y= f(X )

Temperature Dimension , : :
in all grid cells Reduction - linear: Ridge/Lasso regression
(PCA) - nonlinear: Random Forest, Neural Network

- cross-validation on training set

O =N Ozone mixing ratio
in grid cell k

Ridge regression cost function:

2

N p
JRidgek = D _ Yk(t) -> ijX]('til) +AD ci
=1 )

X = 1000 temperature modes of variability = inputs
Y = Ozone mass mixing ratios in each grid cell

ckj» A = coefficients (subject to optimization), regularization parameter
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Results

The machine learning parameterization shows potential

Model
Input features . .
. Machine learning
X Normalization Apply mapping
t-1 Fit regression function Y =f(X)

T EC I Ozone mixing ratio
in grid cell k

Temperature Dimension ) : .
in all grid cells Reduction - linear: Ridge/Lasso regression

(PCA) - nonlinear: Random Forest, Neural Network

/ - cross-validation on training set

Why temperature?

Forcing scenarios such as piControl/4xCO,: factors driving changes
in ozone are directly or indirectly correlated with temperature
(circulation, sunlight, water vapour, catalytic reactions...)

An extension to scenarios with CFCs etc appears feasible.

Nowack et al. ERL (2018)
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Results

The machine learning parameterization shows potential
Model
Machine learning

Input features

X Normalization
t-1

Temperature Dimension ) : .
in all grid cells Reduction - linear: Ridge/Lasso regression

(PCA) - nonlinear: Random Forest, Neural Network
- cross-validation on training set

Apply mapping
Fit regression function Y =f(X)

T EC I Ozone mixing ratio
in grid cell k

Simple and effective:

Predicts ozone as a self-learned function of the climate state.
Replaces both tracer transport and chemical reaction system.
Requires little training data from expensive simulations (<10 years).
Ridge regression performs well under extrapolation — climate change.

Nowack et al. ERL (2018)
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Results

Parameterization for pre-industrial run: internal variability (I)

Peer Nowack

Ozone vmr (ppmv)

altitude: 40.0 km latitude: 2.5N  longitude: OE R:0.92 MSE ratio: 2.75
Climatology Climate|model Machine learning

o

altitude: 23.9km  latitude: 25N  longitude: OE R: 095 MSE ratio: 5.99

5. altitude: 45.8 km  latitude: 40N  longitude: 23W  R:0.89 MSE ratio: 4.07

Time —

Machine learning parameterizations for ozone
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Results

Parameterization for pre-industrial run: internal variability (ll)

latitude: 0.0, longitude: 0.0, altitude: 40.0km latitude: -5.0, longitude: 0.0, altitude: 23.9km _latitude: -55.0, longitude: 56.2, altitude: 45.8km
Climatology 'b c
Climate model

Ridge predictions.
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Kernel density estimates for ozone mixing ratios in three grid cells.

Comparison of the fixed climatological distributions to
interactive chemistry and the machine learning predictions.

See also Nowack, Ong et al. Climate Informatics (2019).
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The ML regression also reproduces the spatial structure well
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Results

The same applies to changes in ozone under 4xCO,

A 4xCO, climate model Prediction - data (4xCO,)
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Left: interactively modelled %-changes in ozone under 4xCO,. Right: the

machine learning model predicts those changes to within 5% almost everywhere.
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Results

MOdeI tl’ansfel’ab"ity: HadGEM3 tO UKESM see Nowack, Ong et al. (2019)

latitude: 0.0, longitude: 0.0, altitude: 31.2km

a.
13| Chemistry-climate model Climatology UKESM: MSE=1.01, R=0.52

12| HAdGEM3—UKESM: MSE=0.29, R=0.89

Climatology HadGEM3: MSE=1.00, R=0.52

2500 3000 3500

!
500 1000 1500 2000

1) Re-center temperature field

2) Use new Xgcqeq as input

3) Gives YHadGEM-consistent

4) Define: YhadgEM-consistent = Y HadGEM + + Y

5) Substitute climatologies: Y{kesm-consistent = Y UKESM + ¥

Works already with 5 years of UKESM data (see linked publication).
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Take-home messages

- Stratospheric ozone is an important factor in climate
modelling.

 This is not reflected in many current climate model
configurations.

« A machine learning parameterization could pose an
effective alternative for including ozone in simulations.

» Lessons learned could be useful for other
parameterization schemes (ocean, cloud/convection,
carbon cycle).
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Next steps

« Fully coupled implementation in UKESM1. The initial
version appears to be stable over long timescales.

« Comparison to other computationally cheaper
modelling alternatives such as linearized chemistry
schemes; cf. Meraner et al. (2020).

« Method development: other algorithms/other inputs.

Peer Nowack Machine learning parameterizations for ozone 16/16


https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS002003

	Introduction
	Results
	Conclusions

