Duvalo (North Macedonia): A “volcano” without volcanic activity

Duvalo area is located close to the village of Kosel, in Ohrid region, in the South-western part of the Republic of North Macedonia.
Duvalo is characterized by a natural phenomenon of intense soil degassing.

Li Vigni et al. ‘Duvalo (North Macedonia): A “volcano” without volcanic activity’
Duvalo is considered to be an **active post-volcanic area** by local people, due to the “rotten eggs” smell, sulphur exhalations, strong soil degassing and “eruptions” from “craters”.

Increased activity reported at the last active volcano in the Balkans - Duvalo, Macedonia

"Duvalo" represents post volcanic phenomenon located in Kosel, just 7 km north from Ohrid.

Duvalo’s appearance consists of several small craters with a diameter of 0.5m and depth of 30 cm

Li Vigni et al. ‘Duvalo (North Macedonia): A “volcano” without volcanic activity’
But is it really a volcano?

Li Vigni et al. ‘Duvalo (North Macedonia): A “volcano” without volcanic activity’
No volcanic rocks or volcanic activity has been documented in the geologic history of the Kosel area since Early Triassic (Markoski et al., 2018).

The Ohrid area is a seismically active extensional basin, and Duvalo corresponds to an active fault system; thus, the phenomenon can be related to a tectonic origin (Hoffmann et al., 2010).

Li Vigni et al. ‘Duvalo (North Macedonia): A “volcano” without volcanic activity’
A mixing trend, typical of soil gases, between a CO₂-dominated end-member (CO₂ > 96%) of deep origin and the atmospheric air can be recognised. Results of the samples richest in CO₂ are consistent with previous analyses (Trojanoviky, 1925; Iloski et al., 1957; Markovski et al., 2018), which reported that the gases were composed mainly of CO₂ (90-98%) and H₂S (0.8%).
At Duvalo no sign of mantle contribution can be recognised:

- Helium shows a R/R_A ratio of 0.1, which indicates an almost pure crustal origin.
- δ^{13}C-CO_2 values around 0 ‰ also point towards a crustal (marine limestone) source.

Li Vigni et al. ‘Duvalo (North Macedonia): A “volcano” without volcanic activity’
Isotope composition of methane shows:
- $\delta^{13}\text{C-CH}_4$ values range from -36.8 to -34.4 ‰ vs. V-PDB
- $\delta^{2}\text{H-CH}_4$ values vary between -166 and -158 ‰ vs. V-SMOW.

The samples fall within the thermogenic field.

Li Vigni et al. ‘Duvalo (North Macedonia): A “volcano” without volcanic activity’
Hydrogen sulfide is found in the gases with concentrations up to 0.55%. No sign of hydrothermal activity is present in the area. Therefore the most probable origin for \(\text{H}_2\text{S} \) is thermochemical sulfate reduction (TSR):

\[
\text{Hydrocarbons} + \text{CaSO}_4 \rightarrow \text{CaCO}_3 + \text{H}_2\text{S} + \text{H}_2\text{O} \pm \text{CO}_2 \pm \text{altered hydrocarbons} \pm \text{solid bitumen}.
\]

Part of the uprising \(\text{H}_2\text{S} \) is oxidized in the shallower part of the system and the produced sulphuric acid reacts with carbonate rocks producing abundant \(\text{CO}_2 \).

The enhanced permeability within the fault system of the area favours both TSR and \(\text{H}_2\text{S} \) oxidation processes and gas upflow to the surface.
Carbon dioxide flux measurements have been performed with the accumulation chamber method in Duvalo area.

Values up to 23,600 g/m²/d have been measured.

The most exhaling areas are prevailingly aligned in NNW-SSE direction, the same of the main tectonic structures of the area.

The total CO₂ output estimated for Duvalo site is 66.9 t/d.
Duvalo is clearly not a volcano and is neither a hydrothermal feature.
The strong gas exhalation is only related to one of the active tectonic structures bordering the Ohrid graben.

Li Vigni et al. ‘Duvalo (North Macedonia): A “volcano” without volcanic activity’
The enhanced permeability deriving from tectonic activity favours the production at depth of H₂S through thermochemical sulfate reduction.

Hydrogen sulfide, on the way up to the surface is partially oxidized creating acid solutions, which reacting with carbonates, produces abundant CO₂ that is degassed from the soils at Duvalo.

Such processes are so efficient to release to the atmosphere about 25,000 tons of CO₂ each year.