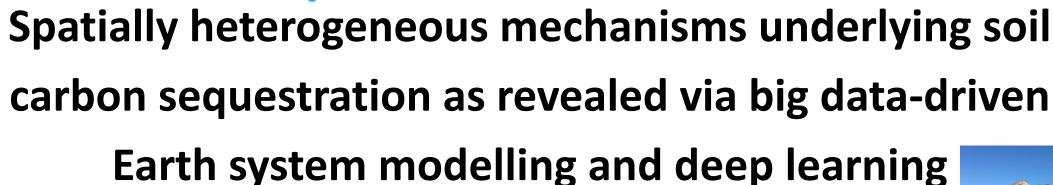
Mechanisms of soil organic matter stabilization and carbon sequestration

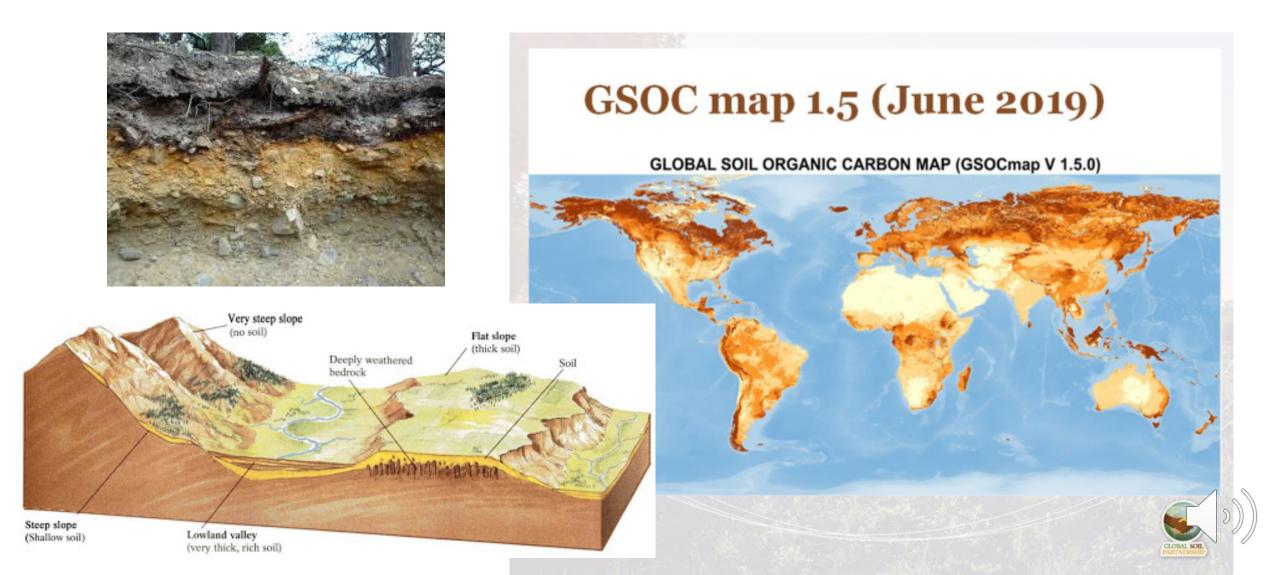


The state of the

Yiqi Luo, Northern Arizona University, United States Feng Tao, Xiaomeng Huang, Tsinghua University, China

Yiqi.Luo@nau.edu http://www2.nau.edu/luo-lab/?home

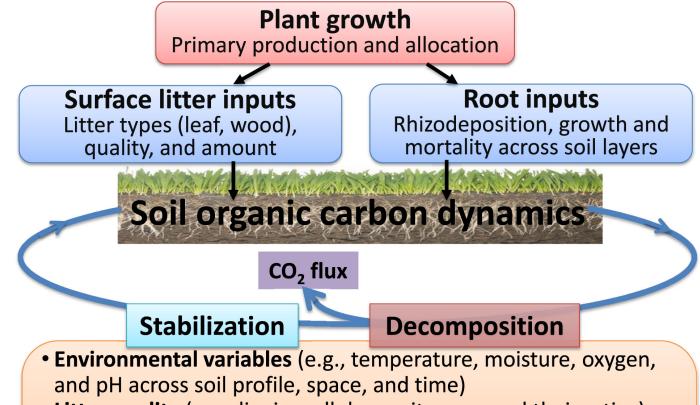
Soil heterogeneity at all scales from local pits to the globe



What determine the soil heterogeneity?

Empirical studies

- ✓ suggest that many processes and factors can cause soil carbon heterogeneity
- ✓ have not identified key mechanisms over large scales

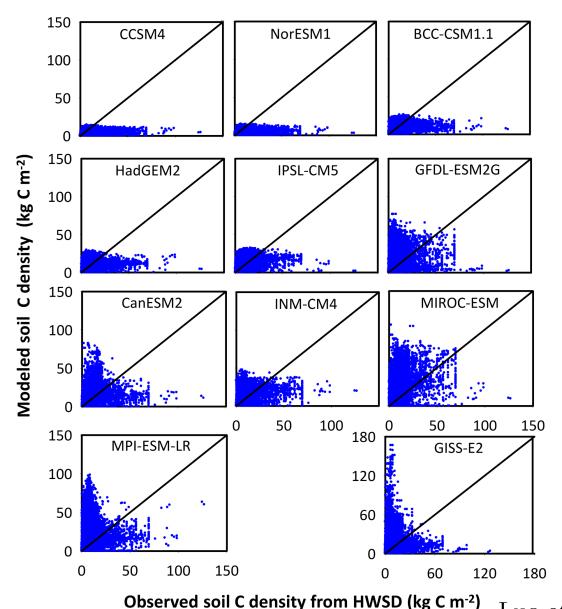


- Litter quality (e.g., lignin, cellulose, nitrogen, and their ratios)
- Soil properties (e.g., aggregates, porosity, specific surface areas of minerals, and mineralogy)
- Microbial attributes (e.g., biomass, taxa, community structure, and physiological activities and adjustments)
- Disturbances (e.g., erosion, land use change, and management

Models mostly

- ✓ use environmental scales (e.g., temperature and moisture) to account for soil carbon heterogeneity
- ✓ can not predict spatial heterogeneity well

Model output for CMIP5



Machine learning

25

-120

Input

variables

Data

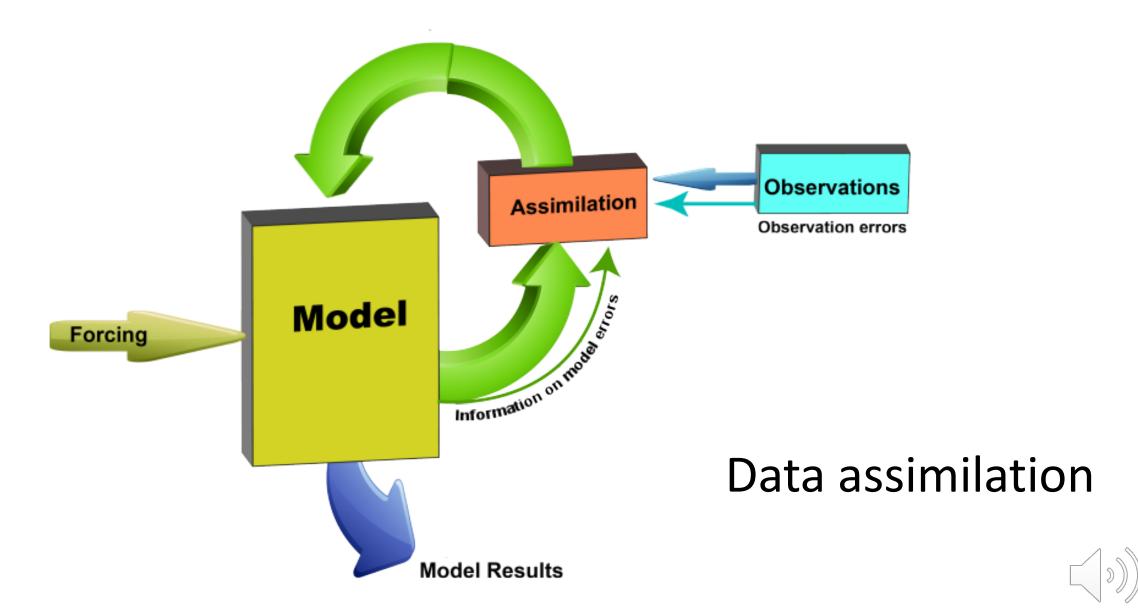
discovery

100.0 TOO.0

े process

Process-based modeling

Data-driven modeling



Matrix equation of CLM4.5

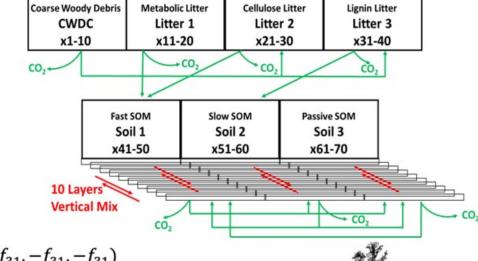
$$\frac{dX(t)}{dt} = B(t)I(t) - A\xi(t)KX(t) - V(t)X(t)$$

 $X(t) = (X_1(t), X_2(t), X_3(t), ..., X_{70}(t))^T$

Model

$$\frac{dX(t)}{dt} = B(t)I(t) - A\xi(t)KX(t) - V(t)X(t)$$

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}11 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{A}22 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{A}31 & 0 & \mathbf{A}33 & 0 & 0 & 0 & 0 \\ \mathbf{A}41 & 0 & 0 & \mathbf{A}44 & 0 & 0 & 0 \\ 0 & \mathbf{A}52 & \mathbf{A}53 & 0 & \mathbf{A}55 & \mathbf{A}56 & \mathbf{A}57 \\ 0 & 0 & 0 & \mathbf{A}64 & \mathbf{A}65 & \mathbf{A}66 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{A}75 & \mathbf{A}76 & \mathbf{A}77 \end{pmatrix}$$



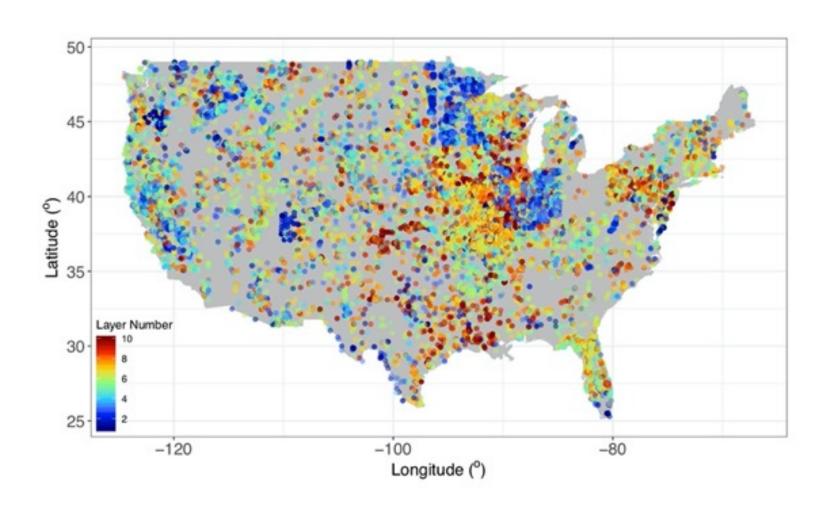
$$\mathbf{A}_{31} = diag(-f_{31}, -f_{31}, -f_{31}, -f_{31}, -f_{31}, -f_{31}, -f_{31}, -f_{31}, -f_{31}, -f_{31}, -f_{31})$$

$$\mathbf{V(t)} = \begin{pmatrix} \mathbf{V11} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{V22(t)} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{V33(t)} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{V44(t)} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{V55(t)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{V66(t)} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{V77(t)} \end{pmatrix}$$

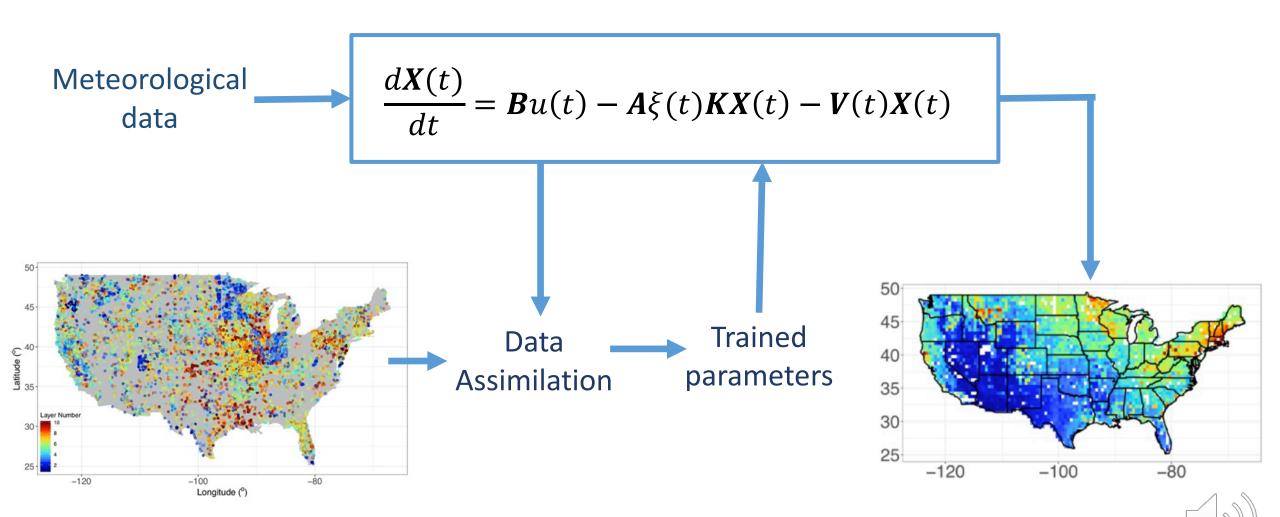
$$\mathbf{V}22 = \mathbf{diag}(\mathbf{z}_{1}, \mathbf{z}_{2}, ..., \mathbf{z}_{10})^{-1} \begin{pmatrix} \mathbf{g}_{1} & -\mathbf{g}_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\ -\mathbf{h}_{2} & \mathbf{h}_{2} + \mathbf{g}_{2} & -\mathbf{g}_{2} & 0 & \cdots & 0 & 0 & 0 \\ 0 & -\mathbf{h}_{3} & \mathbf{h}_{3} + \mathbf{g}_{3} & -\mathbf{g}_{3} & \cdots & 0 & 0 & 0 \\ 0 & 0 & -\mathbf{h}_{4} & \mathbf{h}_{4} + \mathbf{g}_{4} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \mathbf{h}_{8} + \mathbf{g}_{8} & -\mathbf{g}_{8} & 0 \\ 0 & 0 & 0 & 0 & \cdots & -\mathbf{h}_{9} & \mathbf{h}_{9} + \mathbf{g}_{9} & -\mathbf{g}_{9} \\ 0 & 0 & 0 & 0 & \cdots & 0 & -\mathbf{h}_{10} & \mathbf{h}_{10} \end{pmatrix}$$

Huang et al. 2018 Global Change Biology

Data: >24,000 vertical profiles in US continent

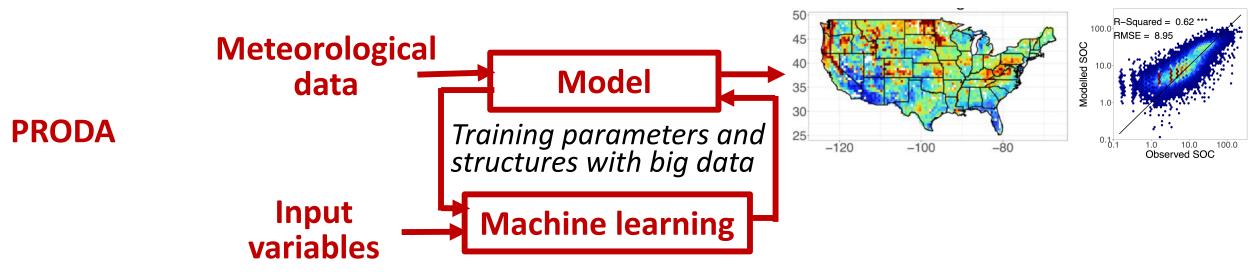


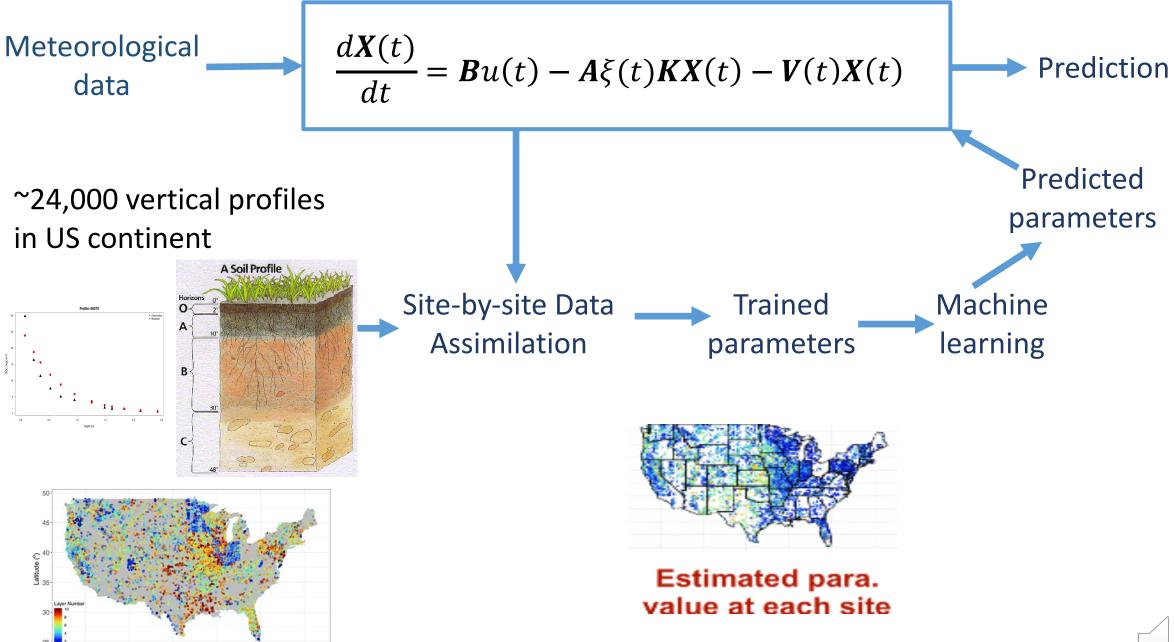
Data-driven modeling

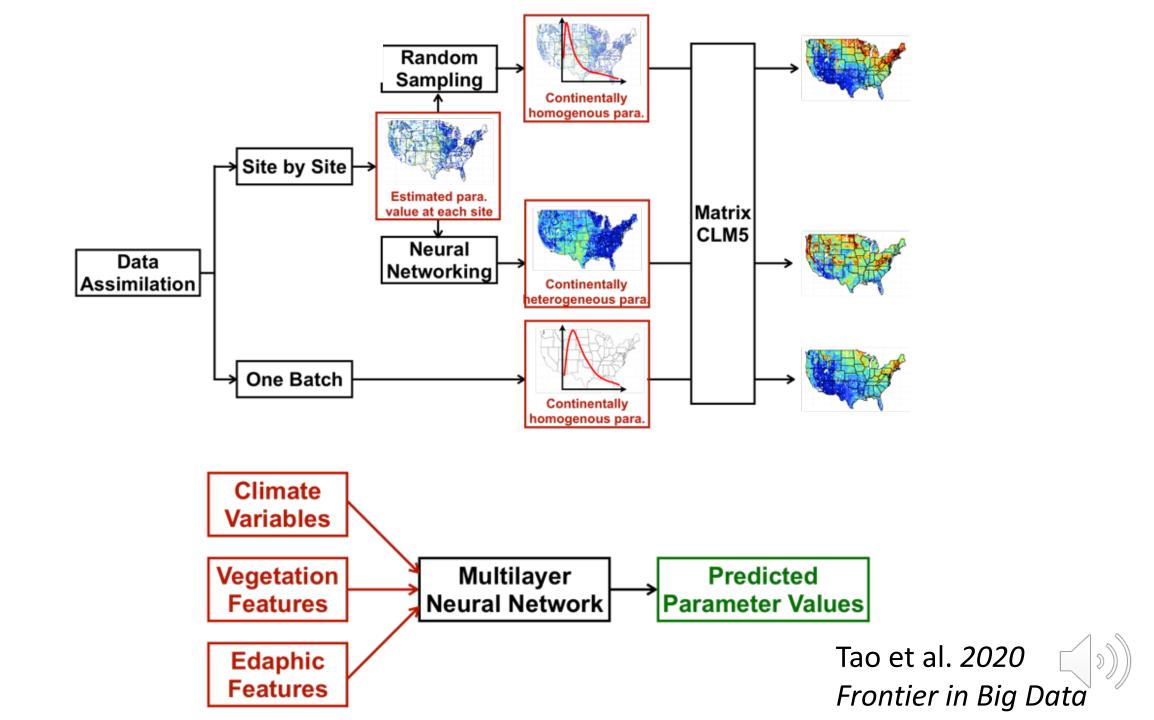


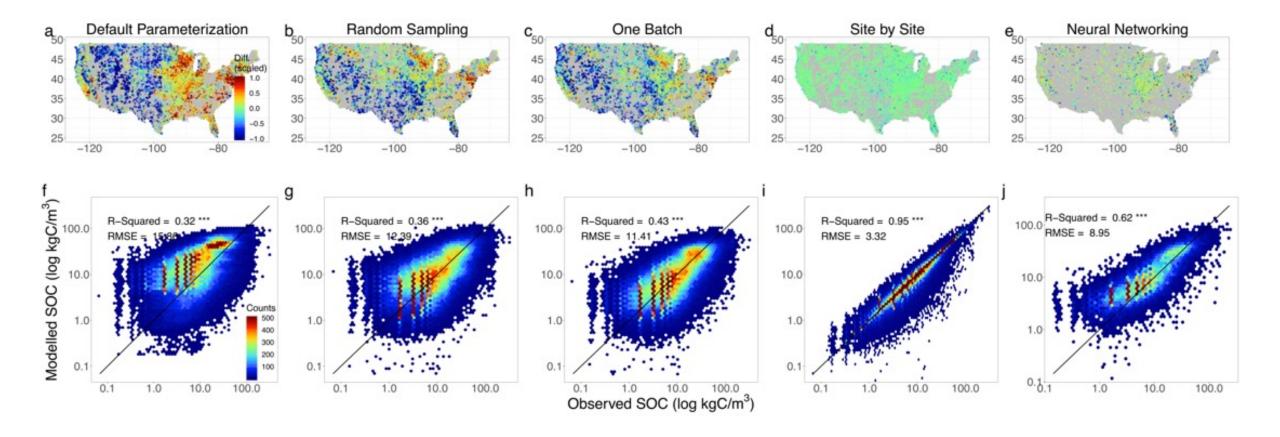
PRODA:

PROcess-guided machine learning and DAtadriven modeling

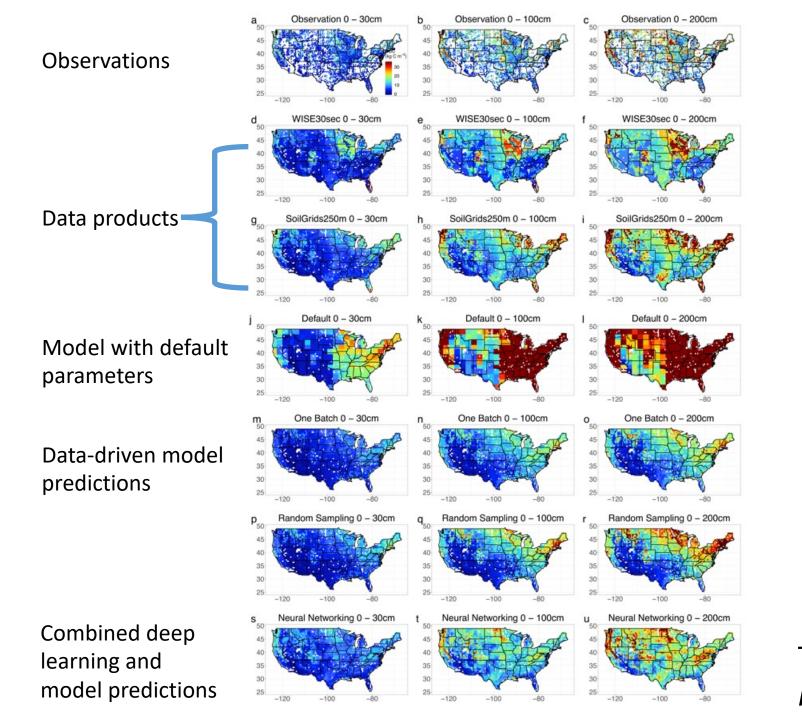




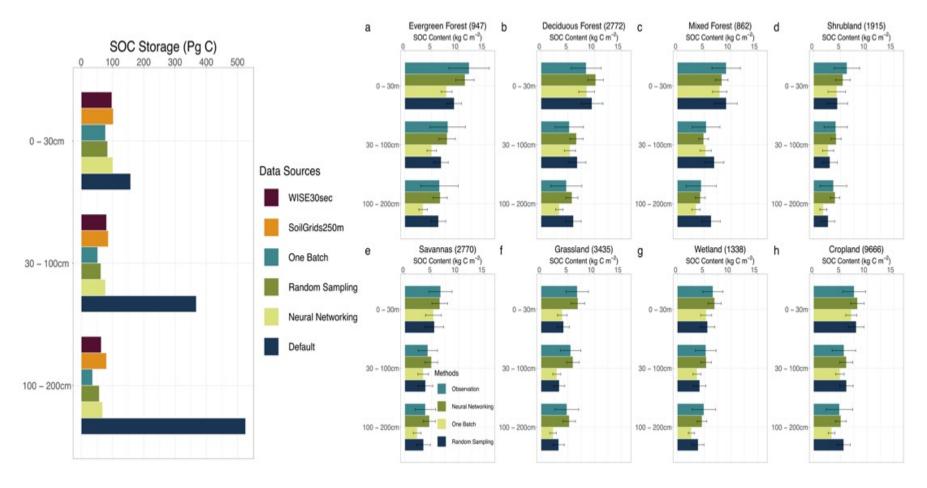




Tao et al. 2020 Frontier in Big Data

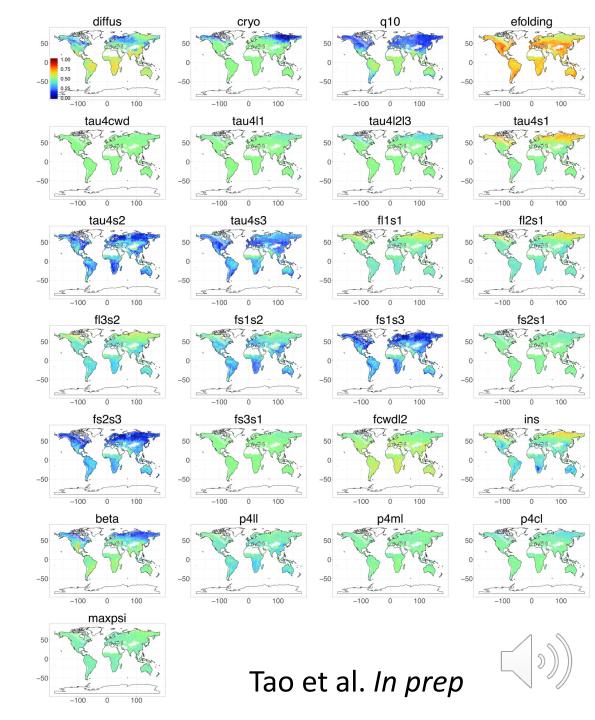


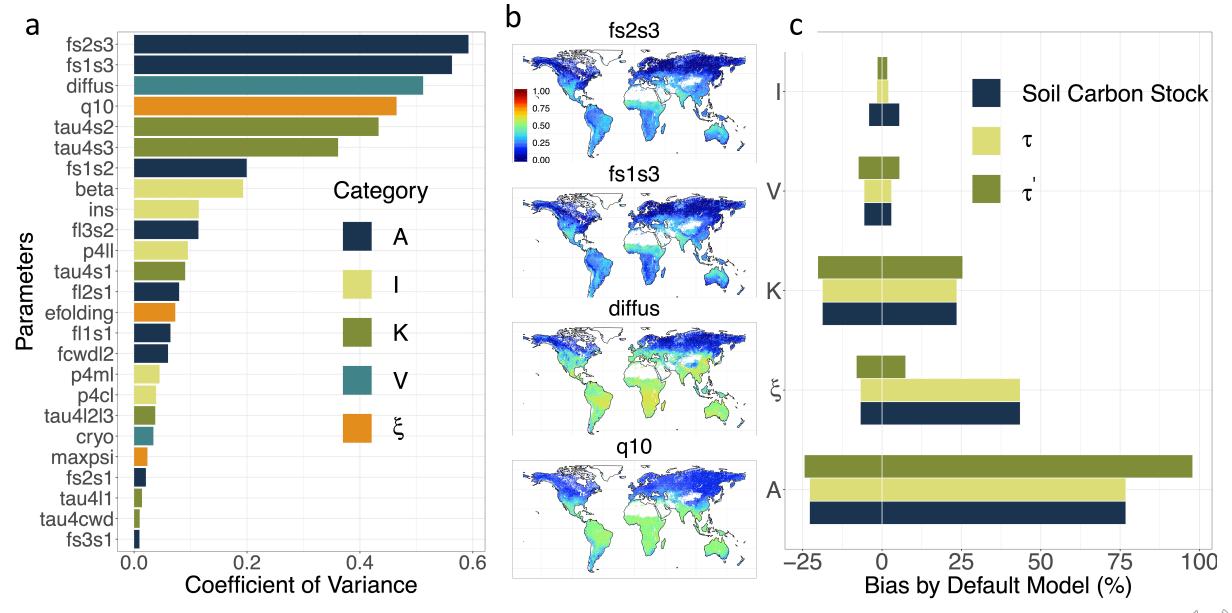
Tao et al. 2020 Frontier in Big Data



Tao et al. 2020 Frontier in Big Data

Patterns of spatially heterogeneous parameters





Parameters in category A are related to microbial carbon use efficiency (CUE_m). Results indicate that CUE_m has to vary in order to predict soil carbon well.

Tao et al. *In prep*

Conclusions

- ✓ Spatially heterogeneous mechanisms are required to realistically predict states of soil carbon dynamics
- ✓ Big data offer new opportunities to discover such mechanisms
- ✓ We developed a novel approach combined PROcess-guided machine learning and Data-driven modeling (PRODA) – to uncover spatially heterogeneous mechanisms underlying soil carbon sequestration

The 1st and 2nd Training Courses on New Advances in Land Carbon Cycle Modeling Flagstaff, AZ, USA, 2018 and 2019

The 3rd Training Courses on

New Advances in Land Carbon Cycle Modeling

Virtual, 20-31 July 2020

http://www2.nau.edu/luo-lab/?workshop

- New theory on land carbon storage dynamics
- 2. Matrix approach to land carbon, nitrogen, and phosphorus modeling
- 3. Data assimilation system with both fluxand pool-based observations
- 4. Deep learning and machine learning to enhance process-based research
- 5. Ecological forecasting

