Characterizing lignin as an atmospherically long-lived ice nucleating biopolymer

in immersion freezing

¹Institute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland

²Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

1 Introduction

Background:

- → Understanding the ice formation pathways in mixed-phase clouds remains crucial for climate models.
- → Heterogenous ice formation (> 38 °C) relies on ice nucleating particles (INPs).
- → Organic aerosols are ubiquitous and a source of INPs, but their complexity hinders detailed IN ability (INA) characterizations.
- → The biopolymer lignin is a subcomponent of organic aerosols and serves as proxy for organic matter.

Research Questions:

By analyzing lignin as an INP we want to contribute to the characterization of INA in organic aerosols.

What is lignin's ability to act as an ice nucleating particle in mixed-phase clouds?

What are the effects of...

- typical IN laboratory treatments
- atmospheric processing
- ... on lignin's INA?

 H_3C

lignin

2 Methods – Ice Nucleation Setup

Freezing Ice Nuclei Counter (FINC) (Miller et al., 20201)

→ droplet freezing (20 µL, range 0 °C to – 26 °C)

3 Lignin's Ice Nucleating Ability

Lignin's INA is relevant for mixed-phase clouds, but lower than INA of complex dissolved organic matter (DOM)

- \rightarrow n_m range from 1 to 10⁵ INPs/mg C (-7 °C to -26 °C)
- → 50% FF at 18.7 °C for 200 mg C/L

A. sonication

heating

 H_2O_2

→ + relative INA with – concentration, + interactions with water

4 Laboratory Treatments

- Sonication: no change in INA
- → extraction tool for particulates on aerosol filters, radical reactions may affect chemical structure (Miljevic et al., AS&T, 2014⁴)

- Heating: MA decrease
- → volatilization of organic material by pyrolysis
- > experiment: heating of lignin as powder, then H₂O addition to 200 mg C/L
- \rightarrow INA with + Heating T, FrzT of H₂O reached after heating to 260 °C
- → + relative INA after removal of insoluble fraction, as mass loss

H₂O₂: XXX INA decrease

- → oxidative removal of organic material → experiment: reactions with varying
- then dilution with H₂O to 200 mg C/L \rightarrow – INA with + ratio of H₂O₂ to lignin, FrzT of background with H₂O reached after ratio 400:1

ratios of mL H_2O_2 (35 w%): g lignin,

200 mg C/L L -18 **Heating T [°C]**

median outliers (<10th, >90th %ile)

5 Atmospheric Processing

- 1. Ozonation: no change in INA
- \rightarrow experiment: bubbling of 0.1 L/min O₃ (100 ppb 1 ppm) through bulk solution of 20 mg C/L up to 6.5 h
- Photochemistry: minimal INA decrease
- > experiment: up to 25 h (6.5 days atmospheric equivalent) of UVB irradiation on 20 mg C/L solution
- → small trend in lignin's INA through photochemistry, however less than observed for complex DOM (Borduas et al., ACP, 2019³)
- → max. 1 °C decrease at 50% FF after 22 h compared to 0 h

Measurement of UV/Vis spectra

(200 - 400 nm)

- → absorbance after exposure to ozone or **UVB** irradiation
- → decay of chromophoric components in lignin's structure
- → the IN activity is mostly retained despite this decay, so these chromophores are not decisive for the biopolymer's INA

6 Conclusions

Lignin's IN ability:

- 1. is relevant for mixed-phase clouds
- \rightarrow n_m from 1 to 10⁵ INPs/mg C (- 7 to 26 °C)
- 2. is robust and lasts the aerosols' lifetime
- → INA decrease to the water background requires harsh laboratory treatments (≥ 260 °C, [400:1] mL H_2O_2 : g lignin)
- \rightarrow minimal change through atmospheric processing (exposed to up to 1 ppm O_3 , to up to 25 h of UVB light with an atmospheric equivalent of 6.5 days sunlight)
- 3. is retained after structural changes in the biopolymer's chromophoric structure
- → decrease of UV/Vis absorption (200 400 nm) after exposure to UVB light or ozone

References:

1 A. Miller, K. Brennan, C. Mignani, J. Wieder, A. Zapori, and Nadine Borduas-Dedekind, 2020, manuscript in preparation

2 T. W. Wilson, L. A. Ladino, P. A. Alpert, M. N. Breckels, I. M. Brooks, J. Browse, S. M. Burrows, K. S. Carslaw, J. A. Huffman, C. Judd and et al, Nature, 2015, 525, 234–238. 3 N. Borduas-Dedekind, R. Ossola, R. O. David, L. S. Boynton, V. Weichlinger, Z. A. Kanji and K. McNeill, Atmospheric Chemistry and Physics Discussions, 2019, 1–27.

4 B. Miljevic, F. Hedayat, S. Stevanovic, K. E. Fairfull-Smith, S. E. Bottle and Z. D. Ristovski, Aerosol Science and Technology, 2014, 48, 1276–1284.

ETHzürich

