The source scaling of swarm-genic slow slip events

Luigi Passarelli1 Eleonora Rivalta2 Paul A. Selvadurai3 Sigurjón Jónsson1

Slow slip events (SSEs) are fault ruptures so slow to excite seismic waves and detected via deformation data, but:

- SSEs can trigger seismic events as:
 - Non-volcanic tremor and VLF
 - Swarms of ordinary (fast) earthquakes
 - and/or

\textbf{We study SSEs accompanied by swarms of earthquakes** (SG-SSEs)}

- The strong interplay between the aseismic and seismic moment release
- The physical processes controlling the aseismic/seismic energy release

** We focus on SG-SSEs because there are data on seismic moments and other source properties of ordinary earthquakes, not the case for seismic tremor.
Database earthquake swarm-genic slow slip events (SG-SSE)

- Seismicity considered if only during ongoing SSEs
- 27 instances SG-SSE
- 3 at volcanoes, 2 strike-slips, 3 normal faults, 19 thrust faults (18 in subduction zone)

Collected source parameters, like:

- Aseismic (Geodetic) Moment from deformation data
- Cumulative Seismic Moment of earthquake swarm from seismological data
- Depth
Scaling aseismic and seismic moments

- Data populates two regions separated by depth of SG-SSE
- Each population shows a power-law scaling
- Scaling implies seismic moment increase as geodetic moment becomes larger
- Scaling independent of the tectonic setting
- On average deeper SG-SSEs (>10km) produce less earthquakes
• Strong interplay between aseismic and seismic slip indicated by moments scaling

• Shallower SSEs are accompanied by relatively larger size swarms than deeper SSEs

• The larger the SG-SSEs the larger the magnitude of the earthquake swarms

• Depth dependent rheological conditions modulated by fluid pore pressure, temperature and density of asperities appear to be the main controls on the scaling.

• …stay tuned more analysis and interpretation on other source parameters is coming in a paper...