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Figure 1. Map of earthquake clusters in Oklahoma (black dots) and wells
(inverted triangles) within a radius of 50 km from the average location in
each cluster.
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Figure 2. Sketch showing the new directivity migration parameter (x) and migration vector and their uncertainties. Small white triangles and small X X X volume or equivalent magnitudes.
the migration and well vectors to identify lateral migration patterns toward white squares depict the heads and tails of 100 migration vectors for the
or away from multiple injection wells. bootstrap analysis, randomly removing 10% of events in each repetition. Figure 5. Lateral migration patterns toward or away from injection wells characterized by k-values. Clusters with strong migration are only considered (x > 0.2) taking into
The final migration vector is depicted by a black line from the tail (large account cumulative volume weighting (a) and injection rate volume weighting (b). Results are shown for each cluster according to the length of the well vector (a1, bl), the
white square) to the head (large white triangle). (a.4, b.4) Maximum total weights assigned to the multiple associated wells based on cumulative injected volumes and injection rate volumes (a2, b2), and the equivalent magnitude (a3, b3).
O FPI y cluster length (d,,.,) and migration coefficient (x) with their uncertainties. Averagg va/ugs and error bars (black squares and /ines) are indicated for propagation toward {K < 60°) and away (k > 120°) from the injection pqint. Histograms are also
el S shown including percentages values (a4, b4). Intermediate cases (60° < k < 120°) are not considered (gray background separated by black dashed lines).
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