MEASURING PLANT HYDRAULIC CONDUCTANCE AND XYLEM VULNERABILITY UNDER CLOSE TO NATURAL CONDITIONS

L. Krieger¹, S. Schymanski¹

¹Luxembourg Institute of Science and Technology, Belvaux, Luxembourg

1. Introduction
2. Plant hydraulics
3. Quantify plant hydraulic vulnerability
4. Problems with the state-of-the art
5. Solution I
6. Solution II
7. Conclusion
8. Future work
9. References

Contact: louis.krieger@list.lu

Supported by the Luxembourg National Research Fund (FNR) ATTRACT programme (A16/SR/11254288)
INTRODUCTION

WHY DO WE CARE ABOUT PLANT HYDRAULICS?

• To take up CO2 and transpire, plants need to transport water from soil to leaves
• Plant hydraulics explains plant water transport under tension
• Hydraulic failure assumed to cause drought stress and eventually plant death
• Different plant hydraulic traits enable plants to survive in different environments
 → By looking at all these traits, best plant functional types for given environment can be chosen
As water evaporates from the leaves through transpiration, it generates a capillary force, which is an adhesive force between the water and plant. The capillary force reduces the pressure at the top of the plant, leading to a large enough pressure gradient between the leaves and the roots. This tension generates water flow through a small network of tubes along the entire height of the plant called xylem [Dixon, 1914].
PLANT HYDRAULICS

CAVITATION

What causes the hydraulic conductivity in plants to change?
The main cause is cavitation, which is due to the low pressure in the xylem.

There are 3 types of cavitation that can occur in plants:
- Water vaporization
- Exsolution of gases
- Air entry

"Runaway-cavitation": due to positive conductance-pressure feedback

Introduction
2. Plant hydraulics
3. Quantify plant hydraulic vulnerability
4. Problems with the state-of-the-art
5. Solution I
6. Solution II
7. Conclusion
8. Future work
9. References

Back Next
The first method is bench dehydration, where plants are deprived of water until cavitation occurred naturally. The plant material is dried to various pressures, measured via a pressure chamber.

The second method is centrifugation. Centrifugation consists of placing a twig in a centrifuge and rotating it to apply known negative pressures to the xylem.

The conductivity is then measured following both of these methods. And the output is a vulnerability curve that characterizes a plant's response to cavitation by plotting the loss of conductivity vs the pressure that was applied.

Figure from Duursma and Choat [2017]
PROBLEMS WITH
STATE-OF-THE-ART

• Experiments performed on dead plant segments
• **Conditions to induce cavitation far away from naturally experienced conditions**
• Methods do not differentiate between different cavitation mechanisms

→ The main goal for this research is to replicate more natural conditions
The first setup mimics the simplest form of a pine tree, with one root, one twig, and one needle. The upper membrane evaporates water like a leaf and drives the flow in the system.
The twig continued to conduct for 21 hours before the system collapsed due to cavitation at the upper membrane.
Permeability of the twig was stable for 2.5 hours before a constant decrease.
If suction exceeds the air entry value, air enters. However, the perforation plates prevent the propagation of air.

Perforation plate – The remains of the end walls between two adjacent vessel elements in a vessel of xylem, forming an opening between the cells. – http://botanydictionary.org/perforation-plate.html
Perforation plates are located at characteristic lengths along the xylem (7cm in this case). One twig long enough with a perforation plate in each vessel and one short enough to have at least one vessel without a plate were chosen.

Air entry is simulated by opening a valve below the twig. The air bubble then moves up the system.
As the bubble reached the longer twig, the flow stopped and the pressure gradient (difference between red and green line) increased until the system failed.

As the bubble reaches the shorter twig, the pressure gradient increases and flow is maintained. This means that cavitation without perforation plates does not inhibit flow.

Perforation plates prevent air from moving up or down even if this prevents flow.
13

Issues with the setup

- The permeability of the long twig showed a slow reduction until the bubble reached the bottom of it and conduction stopped with the flow.
- For the short twig, the reduced permeability could be due to blocked vessels that have perforation plates, meaning flow only continues through vessels without.

EXPERIMENTAL RESULTS

SOLUTION I

- The system collapsed at the upper membrane for each experiment
- The pressure of the system could not be lowered enough to induce the other forms of cavitation
AVOIDING AIR ENTRY AT UPPER MEMBRANE

- Syringe pulling water at a known constant rate
- Increase in flow resistance at the uptake end by bench vise
 → The system also allows the pressure to be lowered with flow remaining constant
SOLUTION II
PRELIMINARY RESULTS

- Permeability is reduced further by the reduction in pressure and begins fluctuating
- The permeability returns to a smooth slope once the pressure is increased
- Reduction in permeability due to low pressure is reversible!

Pressure is lowered by turning vise
Permeability
Pressure after twig
Pressure before twig
1/x fit to data
CONCLUSIONS

- Experimental device enables monitoring rapid responses of flow and hydraulic conductance to forced cavitation and pressure changes

- Able to create near natural conditions for water flow through a twig and control the pressure of the system

- Cannot yet produce all 3 types of cavitation reliably
FUTURE WORK

- Understand the current setup more
 - Reproduce preliminary experiments
 - Induce cavitation in twigs of different species
 - Reduce pressure further to induce other types of cavitation
- Compare results with literature
- Measure diameters of water-filled and embolised vessels with microscope