HILBERT

- **Q1:** How to deal with nonlinear and nonstationary time series?

 A signal $s(t)$ written as [Huang et al., 1998]

 $$s(t) = \sum_{k=1}^{N_s} a_k \cos \varphi_k(t) + r(t)$$

 - $a_k(t)$ is the instantaneous amplitude
 - $\varphi_k(t)$ is the instantaneous phase
 - $c_k(t) = a_k(t) \cos(\varphi_k(t))$ is named empirical mode since derived via an iterative adaptive algorithm, i.e., the **sifting process**
 - $c_k(t)$ oscillates on a **typical timescale**

 $$\tau_k = \frac{1}{2\pi} \left(\frac{d}{dt} \varphi_k(t) \right)$$

 MULTISCALE GENERALIZED FRACTAL DIMENSIONS

 - a signal manifests a **multiscale** behavior $s(t) = \langle s \rangle + \sum \delta s_{\tau}(t)$
 - identify a **natural measure** $d\mu_{\tau}$ and a **partition function** $\Gamma_{\mu, \tau}(l)$
 - introduce a natural measure $d\mu_{\tau}$ and a partition function $\Gamma_{\mu, \tau}(l)$
 - we define

 $$D_{q,\tau} = \frac{1}{q \rightarrow 0} \lim_{\ell \rightarrow 0} \frac{\log \Gamma_{\mu, \tau}(B_{s,\tau}(\ell))}{\log \ell}$$

 HENON MAP

 - $x_{n+1} = 1 -ax_n^2 + y_n$
 - $y_{n+1} = bx_n$
 - Strange attractor: $a=1.4$ and $b=0.3$
 - $D_0 \approx D_2 \approx 1.24 \pm 0.03$
 - EMD extracted out $N_k = 11$ modes
 - $D_{s,\tau} \rightarrow D_q$ when $k \rightarrow k^*=7$
 - The phase-space portrait (black dots) is reproduced by 7 modes (red dots)
 - The geometrical and topological properties stored into a subset of “informative” empirical modes
 - **Monofractal** nature at all timescales

 STANDARD MAP

 - $p_{n+1} = p_n - k \sin(2\pi \theta_n)$
 - $\theta_{n+1} = \theta_n + p_{n+1}$
 - Chaotic nature: $K=1$
 - $D_q \in [0.5, 0.924]$ and $D_q \approx 0.87$
 - EMD extracted out $N_k = 11$ modes
 - $D_{s,\tau} \rightarrow D_q$ when $k \rightarrow k^*=6$
 - The phase-space portrait (black dots) is reproduced by 6 modes (red dots)
 - The geometrical and topological properties stored into a subset of “informative” empirical modes
 - **Monofractal** nature at all timescales

 LR04 RECORD

 - 57 deep sea sediment cores [Lisiecki & Raymo, 2005]
 - Paleoclimatic variability during the last 5.3 Myr
 - $D_{s,\tau} \rightarrow D_q$ when $k \rightarrow k^*=7$
 - $k=1 \rightarrow$ noise content
 - $k \in [2,7] \rightarrow$ less than 300 kyr \rightarrow **multifractal**
 - $k \in [2,8] \rightarrow$ more predictable behavior
 - $k \geq 8$ \rightarrow more predictable behavior
 - Results consistent with Shao & Ditlevsen, Nat. Comm., 2016

 SYM-H INDEX

 - Low-latitude geomagnetic activity [Iyemori, 1990]
 - Occurrence of geomagnetic storms (peak value ~ 200 nT)
 - $D_{s,\tau} \rightarrow D_q$ when $k \rightarrow k^*=5$
 - $D_{s,\tau} \rightarrow$ **multifractal** nature
 - $k \geq 6$ \rightarrow more predictable behavior
 - **Internal** (more chaotic, $k \in [2,5]$) vs. **external** (more regular, $k \in [6,9]$) dynamics [Alberti et al., 2017]

Feeling free to contact me at tomaso.alberti@inaf.it

Q2: How to characterize a fractal structure of phase-space manifolds?

- let $s(t)$ be a signal whose trajectory belongs to a D-dimensional space S^D
- define a natural measure $d\mu_{\tau}(s(t))$ and the partition function $\Gamma_{\mu, \tau}(l)$
- let $B(l)$ be the hypercube of size l centered at the point s of S^D

Hentschel and Procaccia (1983) defined

$$D_q = \frac{1}{q \rightarrow 0} \lim_{\ell \rightarrow 0} \frac{\log \Gamma_{\mu, \tau}(B_{s,\tau}(\ell))}{\log \ell} = \frac{1}{q \rightarrow 0} \lim_{\ell \rightarrow 0} \frac{\log \sum_{l^q} p_l^q}{\log \ell}$$