Forced and chaotic variability of basin-scale heat budgets in the global ocean:

focus on the South Atlantic crossroads

Thierry Penduff,

Fei-Er Yan, Imane Benabicha Jean-Marc Molines, Bernard Barnier

FORCED SIGNAL (Emean)

0-700m Ocean Heat Content averaged over 2002

Atmospherically-driven

Ocean-driven CHAOTIC SIGNAL (member 5 — Emean)

1.2 Introduction

Objectives

Ocean heat content (OHC):
$$OHC = \rho Cp \iiint_{-D}^{\eta} T(x, y, z) dx dy dz$$

1-20 yr ocean heat content interannul variability
(Green: chaotic>forced)

0.700m

[Sérazin et al.,2017]

Contributions of forced and chaotic variabilities on the oceanic heat budget at the scale of these basins?

contents

- Methodology
- Forced and chaotic heat budgets
 - Global ocean overview
 - Focus on the South Atlantic
 - Forced Antarctic Circumpolar wave
- Conclusion

2.1 Methodology

The OCCIPUT project: Forced and chaotic variability

56-year, 1/4°, 50-member ensemble simulation of the global ocean

> DFS5.2 realistic forcing, 1960-2015. Same on the 50 members

Total = Forced + Chaotic

 \forall member i:

$$f_i(t) = \langle f(t) \rangle + f'_i(t)$$

50-member ensemble mean Forced standard deviation σ_F : Temporal std(< f(t) >)

Chaotic standard deviation σ_I : Temporal mean (Ensemble std $(f'_{i}(t))$)

2.1 Methodology

The OCCIPUT project: Forced and chaotic variability

$$Ratio(R) = \frac{\sigma_I}{\sigma_T} X 100\%$$

The magnitude of total variability:

$$\sigma_T = \sqrt{\sigma_F^2 + \sigma_I^2}$$

Forced standard deviation σ_F : Temporal std(< f(t) >)

Chaotic standard deviation σ_I : Temporal mean (Ensemble std (f'_i (t)))

2.3 Methodology

Ocean heat tendency ∂tOHC

$$OHC = \rho Cp \iiint_{-D}^{\eta} T(x, y, z) dx dy dz$$

 $\partial tOHC = Conv + Qnet$

Advective heat transport convergence

Air-sea heat fluxes Residual

Discretization error

Diffusive heat transport convergence

$$Conv = hw - he + hs - hn$$

 $\frac{Var(Residual)}{Var(\partial tOHC)}$

< 10%

2.3 Methodology

Time scales

$$\partial tOHC = Conv + Qnet$$

$$Total = Forced + Chaotic$$

36-year monthly time series:

$$x(t) = \overline{x(t)} + x^{trend}(t) + x^{S}(t) + x^{HF}(t) + x^{LF}(t) + x^{VLF}(t)$$

Subannual: HF < 1.5 years

Lanczos filter

Interannual :1.5 < LF < 10 years

Climate relevant

Decadal: VLF > 10 years

contents

- Methodology
- Forced and chaotic heat budgets
 - Global ocean overview
 - Focus on the South Atlantic
 - Forced Antarctic Circumpolar wave
- Conclusion

Time- and Ensemble-mean air-sea heat fluxes and advective heat transports

Mean air-sea heat fluxes

2.1 PW : atmosphere → low-latitude ocean 2.1 PW : mid/high-lat ocean → atmosphere

Mean advective heat transports

Northward in the Atlantic and Pacific Southward in the Indian Eastward in the Southern Ocean

PW (=
$$10^{15} W$$
)

Advective heat transport variability: chaotic contribution

$$Ratio(R) = \frac{\sigma_I}{\sigma_T} X 100\%$$

At High Frequency: < 1.5 years

Largest chaotic contribution to the heat transport variability in the Southern Ocean

Advective heat transport variability: chaotic contribution

$$Ratio(R) = \frac{\sigma_I}{\sigma_T} X 100\%$$

At Low Frequency: 1.5 years < LF < 10 years

Largest chaotic contribution to the heat transport variability in the Southern Ocean

Advective heat transport variability: chaotic contribution

$$Ratio(R) = \frac{\sigma_I}{\sigma_T} X 100\%$$

At Very Low Frequency: >10 years

Largest chaotic contribution to the heat transport variability in the Southern Ocean (Atlantic sector)

Ocean Heat Content variability: chaotic contribution

$$Ratio(R) = \frac{\sigma_I}{\sigma_T} X 100\%$$

Largest chaotic contribution to the heat transport variability in the Southern Ocean (Atlantic & Indian sectors)

contents

- Methodology
- Forced and chaotic heat budgets
 - Global ocean overview
 - Focus on the South Atlantic
 - Forced Antarctic Circumpolar wave
- Conclusion

Power spectra density

 $\partial tOHC = Conv + Qnet$

Total = Forced + Chaotic

∂tOHC variability is mostly forced (but 50% only at decadal scale)

Conv variability is mostly intrinsic (except 3-6 yr)

Qnet variability is highly forced

Power spectra density

$$\partial tOHC = Conv + Qnet$$

Total = Forced + Chaotic

∂tOHC variability is mostly forced (but 50% only at decadal scale)

Conv variability is mostly intrinsic (except 3-6 yr)

Qnet variability is highly forced

Power spectra density

Total = Forced + Chaotic

Power spectra density

Northward

3-6 yr band-passed forced heat transport variability

South of Africa leads 34°S of the South Indian

contents

- Methodology
- Forced and chaotic heat budgets
 - Global ocean overview
 - Focus on the South Atlantic
 - Forced Antarctic Circumpolar wave
- Conclusion

4. Conclusion

4

- Chaotic intrinsic variability has a large imprint on the ocean's heat budget at
 - the scale of **whole basins**
 - up to decadal time scales
- Low-freq. Chaotic intrinsic variability is strongest in eddy-active regions
 - Southern Ocean
 - Atlantic sector
- 3 Low-freq. forced variability is important as well
 - Largest impact in the **Atlantic sector**
 - Observed Antarctic Circumpolar Wave well simulated (T~4 years)
 - OHC has a large influence on the atmosphere
 - Impact of this low-freq. Chaotic intrinsic variability on the O/A coupled system? other climate components?