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Design Sea State: Typically defined as the maximum significant wave height 
which can be expected over an N year period.

Collaroy (NSW) 2016 storm

In 2010, 290 million
people worldwide lived 
below the 100-year 
flood level and US$9600 
billion of assets were 
exposed to inundation

Extreme Value Analysis (EVA)

Background

(Hinkel et al., 2014)

1 in 100 years significant wave height



The missing piece
Extreme wind-waves
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Future uncertainties:

Wave model

Atmospheric model 

Statistical

GCMs

Emissions scenarios

Past uncertainties:

Observations
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(Breivik et al., 2013, 2014; Meucci et al., 2018)

(Lorenz, 1965; Molteni et al., 1996)

Ensemble approach to EVA
Equivalent of 750 years dataset
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(Breivik et al., 2013, 2014; Meucci et al., 2018)

(Lorenz, 1965; Molteni et al., 1996)

(Morim et al., 2019)

Ensemble approach to EVA

COWCLIP 
community

Equivalent of 750 years dataset
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(Breivik et al., 2013, 2014; Meucci et al., 2018)

(Lorenz, 1965; Molteni et al., 1996)

WWIII (v3.14) 6-
hourly datasets 
forced using CMIP5 
GCM surface winds

(Hemer et al., 2016 )

(Morim et al., 2019)

Ensemble approach to EVA

COWCLIP 
community

Equivalent of 750 years dataset
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Selection of extremes

ACCESS1.0

BCC-CSM1.1

GFDL-CM3

HadGEM2-ES

INMCM4

MIROC5

MRI-CGCM3
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Selection of extremes

peaks over 90th percentile threshold for 
each model -- 48h storm independence

1000 highest 
peaks

(Lopatoukhin et al., 2000)

ACCESS1.0

BCC-CSM1.1

GFDL-CM3

HadGEM2-ES

INMCM4

MIROC5

MRI-CGCM3

Zm =
Hs,m − μm

hist

σm
hist

(Aarnes et al., 2017)
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Representative time interval

Teq = 27 years ∙ 365 ∙ 4 hindcasts a day ∙ 6h ∙ 7 GCMs = 189 years

(Breivik et al., 2013, 2014)

Teq = 20 years ∙ 365 ∙ 4 hindcasts a day ∙ 6h ∙ 7 GCMs = 140 years

Historical dataset 1979-2005:

Future projection dataset 2081-2100:

Selection of extremes

peaks over 90th percentile threshold for 
each model -- 48h storm independence

1000 highest 
peaks

(Lopatoukhin et al., 2000)

ACCESS1.0

BCC-CSM1.1

GFDL-CM3

HadGEM2-ES

INMCM4

MIROC5

MRI-CGCM3

Zm =
Hs,m − μm

hist

σm
hist

(Aarnes et al., 2017)
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Historical dataset
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Historical dataset
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WWIII forced with CFSR winds

Satellite Altimeter(Young and Ribal, 2019)
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Confidence levels
Bootstrap estimates
on the 1000 peaks obtained 
from the ensemble pooling 
technique

Hs
100
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Confidence levels
Bootstrap estimates
on the 1000 peaks obtained 
from the ensemble pooling 
technique

Hs
100

Hs
100
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Projected changes in extreme wind-waves (Hs
100)

2081–2100 - 1979–2005

RCP8.5
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Projected changes in extreme wind-waves (Hs
100)

2081–2100 - 1979–2005

RCP8.5

90th perc.

99.7th perc.



10

RCP4.5 RCP8.5

(% change)
Coastline 

length
(km)

Coastline 
length

(%)

Coastline 
length
(km)

Coastline 
length

(%)
-20% to -15% 9,643 0.89 7,399 0.69
-15% to -10% 13,130 1.22 25,281 2.34
-10% to -5% 69,208 6.42 120,625 11.18
-5% to 0% 277,810 25.76 285,227 26.45
0% to 5% 499,537 46.32 365,741 33.91

5% to 10% 168,420 15.62 182,163 16.89
10% to 15% 33,053 3.06 68,087 6.31
15% to 20% 7,737 0.72 24,015 2.23

Changes along global coastlines
Percentage of changes
in Hs

100

DIVA dataset locations

∆Hs
100  at the closest offshore 

grid point
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Limitations

11

• Tropical Cyclones still not correctly reproduced by GCMs

• Inhomogeneous datasets

(Hemer et al. 2013; Wang et al. 2014; Aarnes et al. 2017; Morim et al. 2019)
Potential
• Results are consistent with previous studies

• Possibility to synthesize an equivalent time series of duration longer than 
the simulation period

• Increased dataset reduces confidence intervals

• Inter models low correlation guarantees independence

• Stationarity
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At what point are we?

12

• Ensemble approach to TC areas with 
increasing model resolution

• Higher resolutions are needed

• Still many uncertainties are 
characterizing observations of 
extremes

• Improved GCMs and additional 
models may allow use of Direct 
Return level Estimates
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CMIP ATM WAVE Period

phase lon x lat [˚] lon x lat [˚] ∆t

5 1.88 x 1.25 1.0 x 1.0 6h 1979-2005 2081-2100

5 2.8 x 2.8 1.0 x 1.0 6h 1979-2005 2081-2100

5 2.5 x 2.0 1.0 x 1.0 6h 1979-2005 2081-2100

5 1.88 x 1.25 1.0 x 1.0 6h 1979-2005 2081-2100

5 2.0 x 1.25 1.0 x 1.0 6h 1979-2005 2081-2100

5 1.4 x 1.4 1.0 x 1.0 6h 1979-2005 2081-2100

5 1.1 x 1.1 1.0 x 1.0 6h 1979-2005 2081-2100

ACCESS1.0

BCC-CSM1.1

GFDL-CM3

HadGEM2-ES

INMCM4

MIROC5

MRI-CGCM3

WWIII (v3.14) 6-
hourly datasets 
forced using 
CMIP5 GCM 
surface winds

(Hemer et al., 2016 )

RCP4.5

RCP8.5
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Extreme Value Analysis
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5x5 region

Extreme Value Analysis
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5x5 region

Extreme Value Analysis Z-score

SO

NP

NA
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5x5 region

Extreme Value Analysis Z-score Hs
100

SO

NP

NA
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Confidence levels

1979-2005

2081-2100 

RCP8.5

Bootstrap estimates
on the 1000 peaks 
obtained from the 
ensemble pooling 
technique
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Confidence levels
1979-2005 2081-2100 RCP8.5
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Similarity test between distribution of extremes

eRMSE = 1 −

σ RMSEm
n

− Hs
100

Hs
100
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Model ensemble 
performance
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Model ensemble 
performance

Comparable to total 
multi-model ensemble 
in Morim et al., (2019)
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Instability of single 
model projected 
extreme changes

1979-2005
2081-2100 

RCP8.5
∆
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Independent and 
Identically Distributed 
(i.i.d) data


