Spruce stems and resins constitute a strong sink for methane (CH$_4$)

Katerina Machacova1, Thomas Schindler1,2, Ülo Mander1,2, Kaido Soosaar1,2
Contact: machacova.k@czechglobe.cz

Introduction

Woody plants are known to emit methane (CH$_4$) as an important greenhouse gas into the atmosphere. Recent studies show that tree stems might be also sinks for CH$_4$; however, the mechanisms of CH$_4$ uptake and its fate are unknown. Norway spruce (Picea abies) is characterised as negligible CH$_4$ source in boreal forests. Even though spruce trees have been widely planted for its wood in large-scale monocultures in European temperate forests, no studies have focused on their CH$_4$ exchange potential in the temperate zone.

Experimental design

The measurements were performed at the experimental station Kranzberger Forst near Freising, Southern Bavaria, Germany, in June 2019. Fluxes of CH$_4$ were measured i) in mature tree stems using non-steady-state stem chamber systems (n=32) installed in stem vertical profiles, ii) in naturally exuded resins sampled from studied stems (n=5) using incubation chambers, and iii) in soil at three position (n=3) using non-steady state soil chambers. Fluxes were detected using a portable greenhouse gas analyser.

Results

Result 1: Spruce stems can be a strong sink for CH$_4$, even if a small amount of resin is present on the bark. In contrast, stem surfaces without visible presence of resins consume CH$_4$ at negligible rates.

Result 2: Stem CH$_4$ uptake potential increases with increasing stem surface area covered with resin residuals.

Result 3: Resins consistently consume CH$_4$. After re-calculation of stem fluxes to resin area, the CH$_4$ uptake rates of stems and resins were in the same order of magnitude (-13.2 and -12.0 mg CH$_4$ m$^{-2}$ resin area h$^{-1}$, resp.). The exuded resins are at least co-responsible for the strong CH$_4$ uptake by spruce stems.

Result 4: The CH$_4$ uptake by predominant spruce stems with resin exudation contributes by 97.1% to the soil CH$_4$ uptake and can even equally contribute to the forest CH$_4$ exchange. Tree stems without visible resin residuals contributes by only 2.4% to the soil CH$_4$ uptake.

Conclusion: the spruce resins appear to be strong and until now undiscovered CH$_4$ sink. Even one small droplet of resins on bark can turn the negligible CH$_4$ exchange of intact spruce stems into strong CH$_4$ sinks, having thus severe impact on the overall forest CH$_4$ balance. This uptake potential of resins should be considered by estimation of forest CH$_4$ balance especially in areas, where resin bleeding is widely spread or is to be expected (bark-beetle areas, tree harvest, clear-cutting).

Acknowledgements

This research was supported by Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415). We thank Thorsten Grams, Jan Hrdlička and Thomas Feuerbach for their support.

1Department of Ecosystem Trace Gas Exchange, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
2Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Tartu, Estonia