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Figure 2.-A) The 2-D final velocity model obtained by joint refraction and reflection travel-time inversion of the whole data set. White circles indicate OBS/Hs locations. Velocity units are km/s. VE=0.75; B) Post-stack time migrated MCS BGR99-16B
profile acquired coincident with the WAS profile. Colored triangles label thrust fault traces. Red rectangles show location of the drill IODP sites projected along the MCS profile (Vannucchi et al., 2003). Seamounts morphology is indicated with white
dots. AW: Accretionary wedge; B.H.: Basement High; D: Domain; HVZ: high-velocity zone; LVB: low-velocity body. See location in Figure 1. Modified after Martinez-Loriente et al. (in press).
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The 2002 Osa sequence nucleated at the leading flank of subducting
seamounts in the area of highest tectonic overpressure. Both estimated
rock fracturing and modelled brittle strain steadily increase from the
leading flank of the subducting seamounts to their top, reflecting the
progressive damage caused by the seamount. These analyses support
the conclusion that the seismicity and the structural-mechanical
evolution of the upper plate reflects the downward propagation of the
leading edge of subducting plate roughness.

Figure 5.- Interpretative cross section of the tectonic and seismic structure along the WAS
and MCS profiles at the southern Costa Rica margin, correlated with the bathymetry.
Location of the 2002 Osa earthquake (red star) and aftershocks from Arroyo et al. (2014a)
(see legend in Figures 3A, 3B). Blue arrows represent fluid migration from the subduction
interface to the seafloor. A portion of the along-strike profile 2 (Figure 5) published by
Sallares et al. (2003) acquired close to our profiles is projected for reference. Note the
excellent fit between both velocity models and inverted reflectors (i.e., L2-L3 and Moho
boundaries). CR: Cocos Ridge; FR: Fisher Ridge; QP: Quepos Plateau; Smt: Seamount.
VE=0.75. Modified after Martinez-Loriente et al. (in press).
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