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Introduction

Gusts:

— can cause damage to building, infrastructure, (wild) life, nature

— important for wind energy production, wind turbines, power lines, aviation, air-pollution
dispersion, siting of turbines and turbine construction (turbulence, return time of extremes, etc.)
and turbine management, Ski resorts / alpine skiing, ski jumping, biathlon, etc.

— provide important information on turbulence conditions at specific sites as turbulence is
seldomly reported

Aims
- Develop a (super) simple gust estimation algorithm usable for hub height / wind turbines

- (Ultra) Short frequency nowcasting of gusts for turbines and surface sites

- Use machine learning and data mining
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Data and pre-processing

e standard meteorological observation sites

e SCADA turbine data :
Q pre-processing needed

74

Pre-processing SCADA data

* No recorded gusts = need to calculate gusts

» Different equations/definitions available from literature (selection):

Wieringa (1973) and Harper et al. (2010):

standard deviation
pr = o

mean wind speed constant of proportionality

gust (averaged over T)

(time t, duration T)

- Simple but missing e.g. convective parts

Wieringa J. 1973. Gust factors over open water and built-up country. Boundary-Layer Meteorol. 3: 424—441.

Cvitan, L., 2003: Determining wind gusts using mean hourly speed. Geofizika, 20, 63-74.

Cvitan (2004, based on CENELEC/TC 11 (SEC) 40):

ut,T = kg Uur

kg =1+

\

gust factor

with:

2.28

ln(

i) c height above ground
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Roughness length
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Data and pre-processing

We have SCADA data measured:
— temperature

— power

— wind speed

— wind direction

Often don’t know exact location and/or surroundings!

- Need to keep it simple!

Developed simple, artificial gust estimation algorithm:

Upr = uT(k — (x uT)) + ef<—

scaling factor

Scaling
factor

gaussian
(white) noise

scaling factor

Noise
Depending on if hub
height or surface
measurement
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wind speed BIAS (m/s)

wind speed BIAS (m/s)

Simple gust estimation - evaluation

observation site bias to measured gust
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Example artificial gust wind turbine (E101)
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Short frequency nowcasting methodology

" Nowcasting model
NONAME ZAMG — next
+1 to +3 hours

Data
Observations only

(changes in future when AROME-
RUC available)
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Perturbing
observations

for ensemble Ensemble nowcasting methods (single/multiple
selections possible):

- Multilinear regression

—  SVR(grid searched) Forecasts: up to 3
- Random Forest hours, 5 — 15-min

- XGB
GBoost frequency
- FF ANN

- Complex NN

- Monte Carlo

- Stochastic Noise Forecast
- LightGBM

- Gradient Boosting

Feature selection

(LASSO, XGBoost, —
Random Forest)

Schicker, I., Papazek, P., Kann, A., and Y. Wang, 2017: Short-range wind speed predictions for complex terrain using an interval-artificial neural network, I |
Energy Procedia, 125, pp. 199-206, https://doi.org/10.1016/j.egypro.2017.08.182 /\ﬁ
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Schicker, I. et al., 2020: Short-frequency ensemble predictions for wind speed and gusts for wind turbines using machine learning, tbs ZAMG



wind speed / gusts [m/s]

Result 10 m site — use cases short frequency nowcasting

meteorological observation site Wien Hohe Warte, forecast of 24.08.2019, init at 16 UTC

artificial gusts used in training&forcast, measured plotted
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Conclusions

— Artificial/synthetic gust algorithm in general good. Adjustments still needed. Usable
for wind turbine applications

— Nowcasting: need to be really careful with input data, feature selecting and training
length. Especially for a feed forward neural network.

— Reliable high-frequency ensemble nowcasts using the new algorithm. However, some
methods need hyperparameter tuning.

— Spread of ensemble approach using perturbed observations still too small for some
of the methods (e.g. FFNN)
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