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Study Site -

* Mueglitz River Basin south of
Dresden (~209 km?2)

* The basin is heavily impacted by
heavy rain events and flash floods

1 Helmholtz Centre for Environmental Research GmbH - UFZ

» Soll moisture Is an essential critical state
variable in land surface hydrology and a key
component of microclimate
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Conclusions ~

 Random Forest outperforms other approaches to predict CRNS records using exclusively features from free data sources

* Most relevant features are altitude, day of year, neutron input monitored at Jungfraujoch Neutron Monitor, air pressure and topographic aspect.

« Transferring the trained machine learning approach on the entire Mueglitz catchment, obtained CRNS estimates resemble the distribution of CRNS
record data as well as the inverse relationship with modelled soil moisture on a seasonal scale

« Future developments will apply the developed machine learning workflow on corrected CRNS records and derived soil moisture estimates to improve

soil moisture mapping on the catchment scale
N J
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