
The required input parameters of the more complex GRIM formula include the soil porosity, soil temperature to calculate the dielectric numbers of the aqueous phase, the dielectric numbers of the solid and the gaseous phase as well as fixed-parameter a=0.5 (Alharthi and Lange 1987). 
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• Soil moisture is an essential critical state 

variable in land surface hydrology and a key 

component of microclimate

• Measuring principles exist on point scale (e.g 

TDR), mesoscale (e.g. vehicle-mounted 

CRNS) and large scale (satellite observation) 

• We integrate CRNS records, features from 

ancillary datasets and machine learning 

algorithms  towards an improvement of soil  

moisture predictions on the catchment scale
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• Mueglitz River Basin south of 

Dresden (~209 km²)

• The basin is heavily impacted by 

heavy rain events and flash floods

• Ongoing event-driven intense 

watershed-scale research and 

monitoring efforts (bit.ly/2zNqKzi)
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Learner Parametrization Runs

Linear Regression (LR) RFE (True/False)*
5-72 Features (5 steps)*
MinMax- and Standardscaler*

100

Random Forest (RF) 1-50 Trees (9 steps) 900

Artifical Neural 
Network (ANN)

1-4 hidden layers (4 steps)
1-19 hidden units (7 steps)

2800

* Parameters of Linear Regression applied for all leaner 

• 3 learners selected for regression problem

• Trained with subset from entire CRNS dataset 

• Performance tested with Mueglitz CRNS data

• Hydrological model of Mueglitz Basin set up 

using mHM 5.10 (Kumar et al, 2013) 

• Model calibration using gauge data

• Provision of daily soil moisture estimates

References

• RF (R2
max=0.74) outperforms LR           

(R2
max=0.28) and ANN (R2

max=0.41)

• No of trees most sensitive model 

parameter

• Altitude, day of year and neutron input 

are most import features

• Random Forest outperforms other approaches to predict CRNS records using exclusively features from free data sources

• Most relevant features are altitude, day of year,  neutron input monitored at Jungfraujoch Neutron Monitor,  air pressure and topographic aspect.

• Transferring the trained machine learning approach on the entire Mueglitz catchment, obtained CRNS estimates resemble the distribution of CRNS 

record data as well as the inverse relationship with modelled soil moisture on a seasonal scale

• Future developments will apply the developed machine learning workflow on corrected CRNS records and derived soil moisture estimates to improve 

soil moisture mapping on the catchment scale 

• Considering the seasonal variations, both observed and predicted 

neutron counts resemble the inverse relationship to soil water content 

• Spatial patterns are not represented properly improvement 

expected by using pre-corrected CRNS records
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Heatmap of CRR records in 
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Heatmap and statistics of available  vehicle-
mounted (CRR) neutron records


