Do chemical characteristics affect the potential of biochars to adsorb cations?

Jose María García Castro de Barragan1,2.
Elena Fernandez-Boy2. Michael Knicker3. Regina León Ovelar1,2,4. Heike Knicker$^1^*$

1 Instituto de Recursos Naturales e Agrobiología de Sevilla (IRNAS-CSIC). Sevilla. Spain
2 Departamento de Cristalografía. Mineralogía y Química Agrícola. Universidad de Sevilla. Sevilla. Spain
3 Consult Michael Knicker (CMK). München. Germany
4 Laboratorio de Química*. Facultad de Ingeniería. Universidad Nacional de Asunción. San Lorenzo. Paraguay

*knicker@irnase.csic.es
Summary: Reasoning

- **Biochar adsorbs cations:**
 - use as filter for heavy metals
 - soil amendment with nutrients storage capacity

- **As a paramagnetic ion, Cu\(^{2+}\) shortens the Spin-Lattice Relaxation time \((T_1)\) of the \(^{13}\)C and its \(^{1}\)H to which it is adsorbed.**

- **NMR Relaxometry** on Cu\(^{2+}\)-doted pyrochars allows the determination of C-groups involved in the adsorption of cations

- **Revealing relationship between chemical composition and adsorption efficiency**
 Using pyrochars with different aromaticity and chemical composition may contribute to a better understanding of the adsorption mechanism
Summary: Results

• The Adsorption to the three pyrochars used in this study was best fitted with the **Freundlich model**

• The **adsorption efficiency increased with aromaticity** of the sample

• We found indications that **crystalline domains** of weakly charred pyrochars from cellulosic feedstock **did not allow Cu\(^{2+}\) to access** all potential adsorption sites

• Aside from charged functional groups, **π-orbitals of aromatic rings contributed to Cu\(^{2+}\) adsorption**

Porosity is not the main factor determining Cu\(^{2+}\) adsorption to pyrochar;

Accessibility of Cu\(^{2+}\) to pores and the availability of π-orbitals of aromatic rings seem also to play an important role.
Introduction: Organic Waste - a Valuable Resource

Definition: Biochar
- Ecologically sustainable organic feedstock
- Heterogeneous substance
- High aromaticity
- High organic C content

EBC (2012)

Material with:
- High porosity
- High waterholding capacity
- Cation adsorption

Pyrolysis (low oxygen)
- Soil amendment
- Slow-release fertilizer
- Gardening soil
- Water clean-up
- Soil remediation
- Filter (water clean-up)
- etc.
But: Biochar ≠ Biochar!

Biochar structure depends on:

- Feedstock
- Production conditions

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitin (Ch0)</td>
<td>400°C</td>
<td>3h</td>
</tr>
<tr>
<td>Peat (Pe0)</td>
<td>500°C</td>
<td>3h</td>
</tr>
<tr>
<td>Acrocomia endocarp (Ac0)</td>
<td>450°C</td>
<td>0.5h</td>
</tr>
</tbody>
</table>

Chitin char (Ch400)
Peat char (Pe500)
Acrocomia endocarp char (Ac450)
Table 1: Elemental composition of chitin, peat and Acrocomia endocarp and their chars produced at 400°C, 500°C and 450°C, respectively. the pH (H$_2$O) and the BET surface area (SA) (CO$_2$) of the chars.

<table>
<thead>
<tr>
<th>Material</th>
<th>C g kg$^{-1}$</th>
<th>H g kg$^{-1}$</th>
<th>N g kg$^{-1}$</th>
<th>Ash g kg$^{-1}$</th>
<th>O* g kg$^{-1}$</th>
<th>H/C$_{atm}$</th>
<th>C/N (w/w)</th>
<th>O/C$_{atm}$</th>
<th>pH (H$_2$O)</th>
<th>S$_{BET}$ m2g$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch0</td>
<td>437.7 ± 2.0</td>
<td>64.4 ± 0.7</td>
<td>63.8 ± 0.4</td>
<td>11.8 ± 0.1</td>
<td>143.7</td>
<td>1.8</td>
<td>6.9</td>
<td>6.9 ± 0.0</td>
<td>6.9 ± 0.0</td>
<td></td>
</tr>
<tr>
<td>Ch400</td>
<td>700.1 ± 2.2</td>
<td>28.0 ± 0.1</td>
<td>86.1 ± 1.0</td>
<td>11.8 ± 0.1</td>
<td>143.7</td>
<td>0.5</td>
<td>8.1</td>
<td>0.2</td>
<td>6.4 ± 0.0</td>
<td>216</td>
</tr>
<tr>
<td>Pe0</td>
<td>429.0 ± 8.8</td>
<td>49.5 ± 2.0</td>
<td>8.7 ± 0.3</td>
<td>11.8 ± 0.1</td>
<td>143.7</td>
<td>1.4</td>
<td>49.2</td>
<td>6.2 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pe500</td>
<td>684.1 ± 3.7</td>
<td>26.8 ± 0.5</td>
<td>14.3 ± 0.3</td>
<td>140.1 ± 1.3</td>
<td>134.8</td>
<td>0.5</td>
<td>47.9</td>
<td>0.1</td>
<td>8.4 ± 0.1</td>
<td>192</td>
</tr>
<tr>
<td>Ac0</td>
<td>487.4 ± 1.7</td>
<td>55.8 ± 0.4</td>
<td>1.8 ± 0.0</td>
<td>11.8 ± 0.1</td>
<td>368.8</td>
<td>1.0</td>
<td>202.7</td>
<td>0.5</td>
<td>7.3 ± 0.1</td>
<td>178</td>
</tr>
<tr>
<td>Ac450</td>
<td>564.8 ± 2.5</td>
<td>46.7 ± 0.2</td>
<td>2.8 ± 0.1</td>
<td>16.8 ± 0.1</td>
<td>368.8</td>
<td>1.0</td>
<td>202.7</td>
<td>0.5</td>
<td>7.3 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

*Calculated by the sum of ash. C. H. and N contents subtracted from 1000 g of sample material.
Chemical Composition Determined by Solid-state ^{13}C NMR Spectroscopy

Bruker Avance III 400 MHz

Cross-polarization: 1 ms
Magic angle spinning: 14 kHz

- **Difference in aromaticity (160-90 ppm):**

 $$\text{Pe500} > \text{Ch400} > \text{Ac450}$$

- **Difference in polarity \(P \):**

 $$P = \frac{I(225-140 \text{ ppm}) + I(90-45 \text{ ppm})}{I(140-90 \text{ ppm}) + I(45-0 \text{ ppm})}$$

 $$\text{Ac450} > \text{Ch400} > \text{Pe500}$$
Different chemical composition, polarity, pH and BET surface (CO$_2$) may lead to:

- Differences in the Cation Adsorption?
- Differences in the Adsorption Mechanism?

Hypothesis:

Adsorption experiments with paramagnetic Cu$^{2+}$

NMR-Relaxometry:
- Relaxation time is affected by paramagnetic Cu$^{2+}$
- Determination of affected C group allows identification of binding site
Adsorption of Cu$^{2+}$ onto Biochar: Experimental Design

- 200 mg biochar + Cu(NO$_3$)$_2$ (0.9-17 mM)
- Shaking for 24 h at 25ºC
- Separation of solid and liquid phase
- Determination of Cu$^{2+}$ concentration in the solution (C_e)
- Calculation of Cu$^{2+}$ concentration in solid (Q_e)

\[\frac{C_e}{Q_e} = \frac{1}{K \cdot Q_{\text{max}}} + \frac{C_e}{Q_{\text{max}}} \]

\[Q_{\text{max}}: \text{maximum adsorption capacity (mmol g}^{-1}) \]

\[K: \text{Langmuir constant (L mg}^{-1}) \]

\[K_d: \text{Freundlich distribution coefficient.} \]

\[n: \text{correction factor constant} \]
Adsorption Isotherms of Cu$^{2+}$ to Ch400
Adsorption Parameters of Cu$^{2+}$ to Ch400, Pe500, Ac450

<table>
<thead>
<tr>
<th></th>
<th>Freundlich</th>
<th>Langmuir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>K_d</td>
</tr>
<tr>
<td>Ch400</td>
<td>0.8596</td>
<td>0.1122</td>
</tr>
<tr>
<td>Pe500</td>
<td>0.8854</td>
<td>0.1177</td>
</tr>
<tr>
<td>Ac450</td>
<td>0.568</td>
<td>0.0144</td>
</tr>
</tbody>
</table>

Better R^2 with Freundlich:

- $n > 1$: non-ideal adsorption on a heterogeneous surface
- K_d (Adsorption affinity): higher Cu$^{2+}$-concentration decreases relative adsorption

K_d (Adsorption affinity):

- Pe500 > Ch400 > Ac450 (very low adsorption)
Relation between Adsorption of Cu$^{2+}$ with Surface Area, pH and Aromaticity

<table>
<thead>
<tr>
<th>Biochar</th>
<th>Single point surface area at P/Po (m2/g)</th>
<th>BET Surface Area (CO$_2$)</th>
<th>pH</th>
<th>Aromaticity</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quitina (Ch)</td>
<td>163.36</td>
<td>216.13</td>
<td>6.4</td>
<td>74</td>
<td>0.32</td>
</tr>
<tr>
<td>Turba (Pe)</td>
<td>158.89</td>
<td>192.41</td>
<td>8.4</td>
<td>88</td>
<td>0.27</td>
</tr>
<tr>
<td>Acrocomia (Ac)</td>
<td>140.02</td>
<td>177.62</td>
<td>7.3</td>
<td>26</td>
<td>1.18</td>
</tr>
</tbody>
</table>

- **No evident relationship between** K, K_d **and surface area or pH**
- **Adsorption efficiency increases with aromaticity and decreasing polarity**

Adsorption to charged groups as main mechanism is unlikely!!!
1. Nuclear spins given into a static magnetic field will align themselves on two different energy levels according to the thermal equilibrium.

2. A radio frequency-pulse (rf) moves spins from the lower to the higher energy level.

3. Termination of the pulse allows the spins to return (relax) to their thermal equilibrium with the spin-lattice relaxation time rate, T_1.
Theoretical Background: T_1 and Molecular Properties

T_1 depends on:

- Molecular size / mobility:

- Interaction with paramagnetics at a distance < 1 nm decreases efficiently T_1
Spin Diffusion: Spins in close neighborhood “communicate” their relaxation behavior among each other, which results in one common T_1:

The size of the "communication radius. L” depends on T_1:

- Short T_1: Small radius
- Long T_1: Large radius

Kind and range of T_1s used in the present study:

<table>
<thead>
<tr>
<th>Kind of T_1</th>
<th>Time (ms)</th>
<th>L (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{1\text{roH-H}}$</td>
<td>0.1 – 20</td>
<td>2 - 30</td>
</tr>
<tr>
<td>$T_{1\text{H}}$</td>
<td>20-940</td>
<td>30 -160</td>
</tr>
<tr>
<td>$T_{1\text{C}}$</td>
<td>2000 -34000</td>
<td>Non*</td>
</tr>
</tbody>
</table>

* The low natural abundance of 13C does not allow spin-diffusion
Information Obtainable from the Determination of T_1:

1. Identification of C groups which are affected by Cu$^{2+}$ adsorption: T_{1C}
2. Changes in molecular mobility: T_{1H}, T_{1Hroh}
3. Minimal distance between domaines: T_{1H}, T_{1Hroh}
4. Chemical composition of fast and slowly relaxing pool
5. Selecting an adsorption mechanism according to the results
T_1Hroh versus Q_e (Cu$^{2+}$) in Ch400

\begin{align*}
\text{Carboxyl} & \quad 185-160 \text{ ppm} \\
0.069x + 2229.3 & \quad R^2 = 0.1858 \\
160-140 \text{ ppm} & \\
26.047x + 2815.7 & \quad R^2 = 0.3631 \\
140-130 \text{ ppm} & \\
3.9181x + 609.14 & \quad R^2 = 0.0123 \\
130-100 \text{ ppm} & \\
15.287x + 401.51 & \quad R^2 = 0.2502 \\
\text{O-Alkyl} & \quad 90-45 \text{ ppm} \\
-75.3854x + 4877 & \quad R^2 = 0.0666 \\
\text{Alkyl} & \quad 45-0 \text{ ppm} \\
54.829x + 472.27 & \quad R^2 = 0.3613 \\
\end{align*}
T_{1Hroh} versus Q_e (Cu^{2+}) - conclusions

- None or only weak but **positive** correlations between T_{1Hroh} and Q_e:
 - Decrease of domain mobility after Cu^{2+} Adsorption overcomes shortening due to paramagnetic interaction?

- Aromatic C and alkyl C show pools with fast and slow T_{1Hroh} (no spin diffusion among them, thus no interactions)
 - Domains with small and large molecules: Distance: > 7.5 nm

- Carboxyl C and O-alkyl C is only present in the slow fraction with higher molecular weight
 - Located mostly in ether and ester bonds. This makes them unlikely to serve as cation-adsorption site

- T_{1Hroh} is comparable for all peaks within one domain
 - Efficient spin \(^{1}\)H spin diffusion does not allow the identification of a specific adsorption site

- Comparable results for Pe500
T_{1Hroh} versus Q_e (Cu$^{2+}$) – Ac450

- T_{1Hroh} Ac450 $>$ T_{1Hroh} Ch400 $=$ T_{1Hroh} Pe500:
 - Remaining crystalline cellulose-like units in Ac450
 - Presence of amorphous units (short T_{1Hroh})

- Carboxyl, O-alkyl and alkyl show two domains:
 - Presence of amorphous units (short T_{1Hroh})

- T_{1Hroh} short (carboxyl, alkyl) increases with Q_e:
 - “Stabilization“ of amorphous domains?

- T_{1Hroh} versus Q_e of aromatic C shows no correlation
For all C-groups the “one-pool”-fit works best

- T_{1H} O/N-alkyl (ether, N-alkyl; 90 – 45 ppm) > T_{1H} aromatic C (160-100 ppm)
- T_{1H} of all C-groups are affected by Cu$^{2+}$
- Minimum T_{1H}: aromatic C (20-30 ms) < O/N-alkyl C (50 – 60 ms)

→ aromatic C as the preferential adsorption site?
T_{1H} versus Q_e (Cu^{2+}) – Ac450

- Without Cu^{2+}, there is only one “pool”
- Cu^{2+} (4 mg g$^{-1}$) \rightarrow 2 pools (T_{1H} \approx 50 ms \rightarrow efficient spin diffusion $<$ 35 nm)
- T_{1H}-slow stays almost constant
- T_{1H}-fast decreases with Q_e
- Minimum T_{1H} for all C groups: 30 ms

- **Cu$^{2+}$ adsorbs only on certain surfaces (pores are to small for entrance of Cu$^{2+}$?)**
- **1H spin diffusion affects only C in a radius $<$ 35 nm**
- **Core C (T_{1H}-slow) with a distance $>$ 35 nm is not affected by Cu$^{2+}$ adsorption**
Without Cu\(^{2+}\), there is only one “pool”

- Cu\(^{2+}\) (4.8 mg g\(^{-1}\)) → 2 pools
- All aromatic C are affected by Cu\(^{2+}\)
- O-Alkyl C shows no evidence for adsorption

➢ **NO evidence for C with preferential sorption**

Cation adsorption to π-orbitals of the aromatic rings?
T_{1C} versus Q_e (Cu^{2+}) – AcCu450

- O-substituted groups show adsorption
- No evidence for adsorption on alkyl C
- Aromatic C shows 2 pools after Cu^{2+} addition

➢ Cu^{2+} adsorption is different for Ac450 and ChCu400
Conclusions

• Cu$^{2+}$ adsorption correlates best with aromaticity of the char, possibly because in the highly aromatic pyrochars, charged groups such as carboxyl or ether are involved in bridging the aromatic domains or within an crystalline domaine (Ac450) and thus not accessible for Cu$^{2+}$.

• Cu$^{2+}$ did not or only slightly affect T$_{1H}$roh:

 ➢ *Effect of decreasing mobility due to chelating is more pronounced than the paramagnetic effects?*

• Smaller domain size (indicated by smaller T$_{1H}$) of the highly aromatic chars offer more surface and thus more sites for adsorption than slightly charred material derived from woody residues (showing large T$_{1H}$).
Conclusions

• In Ac450 containing both polar groups and aromatic structures, both groups are involved in the adsorption.

• We have no evidence that alkyl C or methoxyl C were involved in the adsorption.

Low Cu$^{2+}$ adsorption in Ac450 may be best explained by crystalline structures, reducing the accessibility of Cu$^{2+}$ to adsorption sites and the low content of aromatic C offering binding do their π-orbitals.
Thanks

- To the organizers that made this online conference possible

- MINECO (Spain) and FEDER (CGL2012-37041/CGL2015-64811-P)