Recent advances in GNSS-A observation technology and networks and latest observation results around Japan Islands

#YOKOTA, Yusuke
ISHIKAWA, Tadashi
WATANABE, Shun-ichi
NAKAMURA, Yuto

Institute of Industrial Science, University of Tokyo
Hydrographic and Oceanographic Department, Japan Coast Guard
Hydrographic and Oceanographic Department, Japan Coast Guard
Hydrographic and Oceanographic Department, Japan Coast Guard
GNSS-A system = “seafloor GNSS”
Target of seafloor geodesy

Macrosopic geodesy

Microscopic geodesy
Target of seafloor geodesy

Coupling condition
- Continental plate
- Ocean plate

Earthquake
- Tsunami
- Earthquake

Postseismic phase
- Afterslip
- Re-coupling
- Viscoelastic deformation

Nankai Trough
- Yokota et al. (2016, Nature)
- Nishimura et al. (2018, Geosphere)
- Yokota & Ishikawa (2020, Sci Adv)

2011 Tohoku-oki earthquake
- Sato et al. (2011, Science)

following to Tohoku-oki earthquake
- Watanabe et al. (2014, GRL)

Next target is “time variation”.

GNSS-A results

Onshore & seafloor data

North American Plate
- KAMN
- KAMS
- Oshika Peninsula
- Miyagi Pref.
- MYGW
- MYGI
- FUKU
- Shimosato
- Pacific Plate

Tsunami
- 15m
- 24m

Earthquake
- Postseismic phase

Continental plate
- Ocean plate
GNSS-A: Accuracy

Gradient field was extracted from upper and lower.

→ shallow SSE detection
Monitoring of slow earthquakes along the Nankai

Around strong coupling regions

Seismometer
Strainmeter/Inclinometer or GNSS

- Deep LFE (tremor)
- Shallow VLF

GNSS

- Deep long-term SSE

Latest results were shown in
Yokota & Ishikawa (2020, Sci Adv)

Continuous monitoring: time variation of postseismic deformation

Watanabe et al., 2014; Iinuma et al., 2012
Continuous monitoring: time variation of postseismic deformation

Watanabe et al., 2014; Iinuma et al., 2012
Continuous monitoring: time variation of postseismic deformation

Watanabe et al., 2014; Iinuma et al., 2012
Observation network density & next-generation platform

2008-2009: only one-site observation

One-site observation cannot determine “SSE model”.

We need “observation density”

Present: 80-100 km >> Ideal: 30 km

In present data, we cannot detect “time-constant”.

Higher Frequency:
We need “next-generation platform” (not vessel?)

Present: 4-8 times/year >> Ideal: everyday
Open data strategy & future works

https://www1.kaiho.mlit.go.jp/KOHO/chikaku/kaitei/sgs/datalist_e.html

- Machine learning
- Output
- Understanding of km-scale ocean
- Time series analysis technique
- Monte Carlo filtering
- Event detection method
- Acoustic analysis
- Machine learning
- Data construction system
- Postseismic effect
- Coupling condition
- Slow slip event
- Expression method
Address list

Pamphlet: http://sgoi.iis.u-tokyo.ac.jp/figure/pamphlet_190724e.pdf

Data site: https://www1.kaiho.mlit.go.jp/KOHO/chikaku/kaitei/sgs/datalist_e.html

Latest papers:

Yokota & Ishikawa (2020, Science Advances)

Yokota, Ishikawa, Watanabe (2018, Scientific Data)

Yokota, Ishikawa, Watanabe (2019, Marine Geophysical Research)

Yokota & Ishikawa (2019, SN Applied Sciences)

Ishikawa, Yokota, Watanabe, Nakamura (2020, Frontiers in Earth Science)

Shallow slow slip event

GNSS-A data paper

GNSS-A analysis method: Ocean structure

GNSS-A analysis method: Interpretation of ocean structure

Review: GNSS-A frequency history