U F HELMHOLTZ I G B
Centre for Environmental Research rw
Leibniz-Institute of

Freshwater Ecology

and Inland Fisheries

Tracer-aided ecohydrological modelling to
quantify fluxes and ages in an upland
agricultural headwater catchment

Xiaogiang Yang'?, Doerthe Tetzlaff':3, Chris Soulsby'#, and Dietrich Borchardt?

IDepartment of Ecohydrology, Leibniz — IGB, Berlin, Germany

’Department of Aquatic Ecosystem Analysis and Management, Helmholtz — UFZ,
Magdeburg, Germany

3Department of Geography, Humboldt University of Berlin, Germany

4Northern Rivers Institute, University of Aberdeen, Aberdeen, UK



© Authors. All rights reserved

Introduction

e Stable isotope tracers provide insights in
ecohydrology:
— Storage-flux-age interactions
— Mixing and partitioning (e.g., Evaporation
. . Water balance compartments are charaterized by specific
VS. Tra ns p | rat Ion ) isotopic signatures (source US Dept. of Energy)
* Tracer-aided ecohydrological modeling: s
— Capturing vegetation dynamics T |
“~ Water source _ ‘
— Explicitly revealing flow paths and water A W n\d"w”hpﬂm |
ages WL -~
e Fully distributed, process-based modeling: L - A
— Representing heterogeneity of natural ‘\‘—:jﬁ:;:?" |
and anthropogenic controls T '
— Benefiting from measurements at et o et ctong (st o
different scales
IGB
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What do isotopes/tracers help us to understand?

e When is water coming from where and how old is that water

Characteristic signatures for water sources

Temporal hydrograph separation Spatial hydrograph separation
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e Catchment functioning (tracked by water isotopes and age)
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Objectives

e |nvestigation of complex catchment functioning in an
agricultural headwater catchment based on long-term
intensive monitoring

e |sotope-aided ecohydrological modeling to track and reveal
flow paths and precipitation partitioning

e |nsights into impacts of extreme droughts on catchment
functioning and implications for further model development
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Ecohydrological Model

-1

he EcH,0-iso model

Spatially distributed model

Water, energy and vegetation
dynamics (Maneta et al., 2013)

Integration of isotopic tracers and
water age (Kuppel et al., 2018, 2020)
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Fully integrated tracer
module for tracking water
isotopes and age
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The Schafertal catchment: an intensively monitored, upland
agricultural catchment

e Agricultural dominant headwater catchment
(1.44 km?2) in the Harz mountain, Central {4
Germany

e Multi-source Data:

— Climatic, discharge, soil temperature
— Soil moisture from the lysimeter station

— Stable water isotopes (2H and 180) — DEM Flow direction
— Detailed agricultural management information o -
e EcH20-iso model configuration: fiﬁ 47
— 50X 50 m grid size e Patches Sl s
— Three soil types: arable hillslope, riparian patcgemal *_
floodplain and upland forest i§ ..qi._‘-—'

— Seven patches: grass, forest and five crop fields
with different crop rotations

— Daily simulationin 2010 - 2019
IGB
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Complex catchment functioning

= Complex geomorphologic structures and soil profiles: High hydraulic conductivity
and porosity in the top layer vs much less permeable deep layer (Graeff et al.,

Simulated Q

Hydrol.Process., 2009)

= Complex catchment responses and precipitation partitioning
= Extreme drought summer in 2018 and 2019
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Distinct seasonal patterns of
observed daily precipitation (upper)
and daily discharge (lower)
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Five-min high-frequency, continuous meteorological
observations in 2010-2019

(T- air temperature (°C), RH- relative humidity (%),
GlobRad-global radiation (W/m?2), T10-soil temperature at 10cm(°C))
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Initial model calibration based
only on daily discharge data
(2011-2013)
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(grey lines: the best 100 simulations; blue line- observations)

 Initial model validation | — discharge and soil moisture content (SMC) in 2010-2019

0

101

20

30

it

J\"\\‘

Fha il

M W r]f M’ w

0.3

Simulated Q
o
n

o

oo

L8

F0.3 o ] |
Ak i j‘l‘ Al
LSRR ISR SR
; ,,'UJ. s "\|" W |
‘ H (i Y
-0.28 i ! | I\\/‘
g o
2
g
.0:10
i \‘
) (M P N
? ' f - \‘ \_r" I\“‘f “Irﬂ. 1\
I r0.0 é‘ ‘ ‘# \ ‘.\ J
12118 12/19 -

1211 1212

Best three runs of discharge simulations for the whole period
(colored lines-simulations, black line-observations)

1213 12114 12015

&fﬁer ﬂhw ‘&J\k~ ié

L]

H

SMC simulations in 1st soil
layer (0-0.2m, blue line-
observations at 10cm)

SMC simulations in 2nd
soil layer(0.2-0.5m, blue
line-observations at 30cm)

SMC simulations in 3rd
soil layer(0.5-2m, blue
line-observations at 50cm)
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Preliminary results

« Initial model validation Il — reasonable simulations of surface water isotopic and age

signatures in 2010-2019
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On-going and future work

* Model is capable of reproducing catchment functioning of well-
managed Schafertal catchment, as well as under extreme conditions in
2018 and 2019

« Comprehensive model calibration/validation based on multi-objective
functions and multi-source data are needed

« Coupled ecohydrological and water quality modeling is critical for
advanced understanding of ecohydrological and environmental impacts
under the changing climate

« Coupled, tracer-aided model support targeted investigations of critical
areas/moments across scales

The Schéafertal catchment The Selke catchment The Bode catchment @B‘
(1.44 km?) (456 km?) (ca.3300 km?) Leibm,_,nstm/
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