The dominant environmental driver of leaf water stable isotope composition differs for $\delta^2 H$ compared to $\delta^{18} O$

Matthias Cuntz, Adrià Barbeta, Rebekka Bögelein, Rosemary Bush, Juan Pedro Ferrio, Larry Flanagan, Arthur Gessler, Regina Hirl, Ansgar Kahmen, Claudia Keitel, Chun-Ta Lai, Niels Munksgaard, Daniel Nelson, Jerome Ogee, John Roden, Hans Schnyder, Steven Voelker, Lixin Wang, Hilary Stuart-Williams, Lisa Wingate, Wusheng Yu, Liangju Zhao, Lucas A. Cernusak

© Authors. All rights reserved.

Background

- Several important isotopic biomarkers derive part of their signal from leaf water stable isotope composition (*e.g.*, leaf wax δ^2 H, cellulose δ^2 H and δ^{18} O, lignin δ^{18} O).
- In order to interpret these, it is helpful to know which environmental variable most strongly controls leaf water $\delta^2 H$ and $\delta^{18}O$.
- Because the Craig-Gordon equation can be used to predict both leaf water $\delta^2 H$ and $\delta^{18}O$, it is often assumed that they behave similarly.

Question

Do leaf water $\delta^2 H$ and $\delta^{18} O$ mirror each other in their responses to environmental drivers, or do they capture different environmental information?

Approach

- We compiled observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity from published and unpublished sources.
- Our dataset comprises 690 observations from 35 sites with broad geographical coverage.
- We limited our analysis to daytime observations, when photosynthetic processes that incorporate leaf water isotopic signals take place.

Figure 2. Observed leaf water δ^{18} O plotted against the individual variables which enter the Craig-Gordon equation.

Atmos. Vapour δ^{18} O [‰]

Xylem δ¹⁸O [‰]

Figure 3. Observed leaf water δ H plotted against the individual variables which enter the Craig-Gordon equation.

Atmos. Vapour $\delta^2 H [\%]$

-100

Xylem $δ^2$ H [‰]

Results contd.

- The Craig-Gordon equation was a good predictor of leaf water stable isotope composition, explaining 86% of variation in δ^2 H and 64% of variation in δ^{18} O (Figure 1).
- The Craig-Gordon equation uses as inputs the isotopic composition of xylem water and atmospheric vapour, air temperature and relative humidity. We tested bivariate relationships between each of these and leaf water $\delta^2 H$ and $\delta^{18}O$.
- For δ^{18} O, the strongest relationship was with relative humidity (Figure 2). For δ^2 H, the strongest relationship was with xylem water δ^2 H (Figure 3).

Conclusions

- Leaf water $\delta^2 H$ and $\delta^{18} O$ are not simply mirror images in the environmental information that they carry, with crucial implications for interpretation of downstream isotopic biomarkers.
- Leaf water $\delta^2 H$ is most strongly influenced $\delta^2 H$ of xylem water and/or atmospheric vapour, whereas leaf water $\delta^{18}O$ is most strongly influenced by relative humidity.

Further information

Matthias.Cuntz@inrae.fr Lucas.Cernusak@jcu.edu.au