Urban greenhouse gas emissions from the Berlin area: A case study using airborne CO₂ and CH₄ in situ observations in summer 2018

<u>Theresa Klausner</u>¹, Mariano Mertens¹, Heidi Huntrieser¹, Michal Galkowski^{2,3}, Gerrit Kuhlmann⁴, Robert Baumann¹, Alina Fiehn¹, Patrick Jöckel¹, Magdalena Pühl¹ and Anke Roiger¹

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ²Max-Planck-Institut für Biogeochemie (MPI), Biogeochemische Systeme (BGC), Jena, Germany ³AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland ⁴Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

Motivation: Greenhouse Gases (GHG)

- Two most important anthropogenic GHG: carbon dioxide (CO₂) and methane (CH₄)
- Significant increase in global surface mixing ratios (MR) since pre-industrial times

- Paris Agreement aims to keep global temperature rise below 2 °C compared to preindustrial levels (UNFCCC, 2015)
- → efficient mitigation strategies require accurate knowledge of the GHG budget

Motivation: Urban Areas

- More than half of the world's population (UN, 2018) lives within less than 3 % of the terrestrial earth's surface (Liu et al., 2014)
- Recognised as significant hot spot of GHG emissions (Kennedy et al., 2012; Marcotullio et al., 2013)
- Relatively sparse GHG studies on European cities, e.g. London (O'Shea et al., 2014; Helfter et al., 2016; Pitt et al., 2019), Rome (Gioli et al., 2014), Paris (Bréon et al., 2015), Cracow (Kuc et al., 2003; Zimnoch et al., 2019), Florence (Gioli et al., 2012)

The German capital Berlin:

- Largest city and 2nd in terms of population density (Statistisches Bundesamt, 2018)
- Expected emissions from CAMS (Kuenen et al., 2014) compared to London (Pitt et al., 2019)
 CO₂: roughly similar, i.e. ~32 Mt a⁻¹
 CH₄: roughly 50 % lower, i.e. ~28 kt a⁻¹
- Relatively isolated location and flat topography favour the mass balance approach

https://diercke.westermann.de/

Strategy: Airborne Top-Down Mass Balance Approach

Used to estimate emission rates (e.g. Mays et al., 2009; Karion et al., 2013; Heimburger et al., 2017; Ren et al., 2018) and to independently validate total bottom-up emissions

Flight approach within the BL:

- **Downwind:** multiple transects at stacked altitudes → capture urban outflow
- **Upwind**: one centred transect → identify possible emission inflow and natural atmospheric variability
- **Vertical profiles**: extend into the free troposphere → determine the BL depth
- Mass flow rate f [g s⁻¹]

$$f = \int_0^{PBL} \int_{-a}^a \left([c]_{ij} - \left[c_{bgr} \right]_{ij} \right) \frac{p_{ij}}{T_{ij} * R} M u_{ij} dx dz$$

with background MR c_{bar} , observed MR c, pressure p, temperature T, ideal gas constant R, molar mass M, perpendicular component u of the horizontal wind, horizontal boundaries of the plume -a to a

CO₂ and CH₄ emission maps for the Berlin area

(a) Global inventory EDGAR v5.0 with a resolution of 0.1° x 0.1° (Crippa et al., 2019); (b) European inventory CAMS-REG v1.1 with a resolution of 0.0625° x 0.125° (Kuenen et al., 2014); superimposed are point sources from the European Pollutant Release and Transfer Register (E-PRTR, http://prtr.ec.europa.eu), exceeding a threshold of 0.1 Mt CO₂ a⁻¹ and 0.1 kt CH₄ a⁻¹; (c) Local BERLIN inventory of detailed point, line and area sources, which were gridded to a spatial resolution of 0.01° x 0.01° (Berliner Emissionskataster v1.0, AVISO GmbH and IE Leipzig, 2016); horizontal stripes in CO₂ are due to take-off and landing at the two major airports

CO₂ and CH₄ emission maps for the Berlin area

(a) Global inventory EDGAR v5.0 with a resolution of 0.1° x 0.1° (Crippa et al., 2019); (b) European inventory CAMS-REG v1.1 with a resolution of 0.0625° x 0.125° (Kuenen et al., 2014); superimposed are point sources from the European Pollutant Release and Transfer Register (E-PRTR, http://prtr.ec.europa.eu), exceeding a threshold of 0.1 Mt CO₂ a⁻¹ and 0.1 kt CH₄ a⁻¹; (c) Local BERLIN inventory of detailed point, line and area sources, which were gridded to a spatial resolution of 0.01° x 0.01° (Berliner Emissionskataster v1.0, AVISO GmbH and IE Leipzig, 2016); horizontal stripes in CO₂ are due to take-off and landing at the two major airports

[UC]² Urban Climate Under Change Stadtklima im Wandel

Mission flights were carried out in the framework of the [UC]² project, see Scherer et al. (2019)

Mission Flights in July 2018

- Picarro CRDS analyser at 0.5 Hz (G1301-m):
 overall measurement uncertainty <0.2 ppm CO₂ and <1.1 ppb CH₄
- Meteorological sensor package: T (σ = 0.15 K), p (σ = 0.25 hPa), humidity, wa (σ = 2°), ws (σ = 0.3 m s⁻¹) (Mallaun et al., 2015)
- Upward spiral at the Tempelhofer Feld (TF) from ~300 m to ~3 km
- Stacked flight transects 30 km to 40 km downwind of the city centre

Case Study on July 20th: Flight pattern and time series

- Sampling of the urban plume started at point 'A' towards the SW ('A' equals 0 km of the flown horizontal distance)
- HYSPLIT backward trajectories, started from the downwind wall, indicate a steady wind flow within the BL for at least 6 hours prior to the measurements
- Measured average wind speed: 4.8 ± 1.8 m s⁻¹
 Measured average wind direction: 299° ± 27°

GHG mixing ratios and vertical profile

- CO₂ plume: well-mixed with $\Delta_{max} = 4$ ppm in the northern part of the flight track
- CH₄ plume: centre extends more to the south-west with consistent MR in the two lower flight legs (Δ_{max} = 21 ppb) and significantly lower MR in the free troposphere (FT)
- Boundary layer: well-mixed and efficiently capped with strong gradients towards the FT

Instantaneous CO₂ and CH₄ mass flux

(average based on three individual transect emission rates)

	CO ₂	CH ₄	
Mass flux	$[t \ s^{-1}]$	[kg s ⁻¹]	Choice of background reflects two
	1.39 ± 0.76	5.20 ± 1.70	<pre>approaches using:</pre>
Uncertainties	[%]	[%]	#1) the MR measured during the upwind leg, projected on the downwind wall
Choice of background	±52	±21	using HYSPLIT trajectories
Wind speed and direction	±15	±23	#2) the linear interpolation of MR
PBL depth variation (by 10 %, i.e. ~270 m)	±9	±10	between the downwind plume edges

The **urban plume** needs to be **separated from enhancements** caused by emissions from anthropogenic sources (or natural variability) **upstream of the city**, even in the case of an apparently relatively isolated city as Berlin.

→ approach #1 is used for the final mass flux

Annual CO₂ and CH₄ mass flux

HYSPLIT footprint area for (a) CO₂ and (b) CH₄

Annual CO₂ and CH₄ mass flux

- Mass balance flight
- Berlin city

 (inventorial emission flux within the Berlin city boundary)
- Footprint area (inventorial emission flux within the footprint area, determined with HYSPLIT)

CO₂ flux

- agrees within error estimates, but is larger than CAMS-REG and EDGAR
- Overestimation of EDGAR road transport emissions? similar to e.g. Gately et al., 2013; McDonald et al., 2014; Gately and Hutyra, 2017
- Even larger derived annual flux due to the seasonality of CO₂ emissions?
 max. of domestic heating in winter, min. in summer

CH₄ flux

- agrees better with EDGAR footprint (factor ~2) than CAMS-REG (factor ~7)
- CAMS-REG claims almost no contribution (~1 %) of waste related emissions compared to EDGAR (~79 %)
- footprint indicates that sources in the south-west outside of Berlin contribute to the measured CH₄ enhancement

Global/regional nested chemistry climate model MECO(n)

Task: Isolate urban emissions

Input: city-limited BERLIN inventory

+ E-PRTR point sources (CH₄

emissions of BERLIN are already

scaled with a factor of 4.5)

Output: $c-CO_2$ and $c-CH_4$ (for "city") as

2D column-averaged dry air mole fractions (at 13 UTC, a+b)

and sampled along the flight (c)

Resolution: ~1 km x 1 km

Avg. simulated wind direction: 305° ± 36°

- CO₂: agreement of simulated and observed location of the CO₂ plume and its shape
- CH₄: simulated shape is too narrow (→ missing sources!) and max. CH₄ enhancements are a factor ~5 too low (→ significant underestimation of urban emissions!)

Potential CH₄ sources outside the city boundary

- CH₄ emissions show large discrepancies between the three different inventories, especially with respect to the waste sector
- → Implementation of CH₄ emissions from (a) sewage-treatment plants (MLUL, 2017) and (b) unofficial waste deposits (CORRECTIV, 2016) to investigate the origin of the unexpected missing CH₄ sources

- (a) Larger sewage-treatment plants agree with pixels of strong EDGAR waste water CH_4 emissions \rightarrow transfer of emissions (w-CH₄ = 1 to 7 kt a⁻¹)
- (b) Estimated CH_4 emissions from unofficial waste deposits using Landfill Gas Emission Model (LandGEM) (I-CH₄ = 0.1 to 32 kt a⁻¹)
- → Emissions serve as input for model sensitivity test rather than representing true values

Simulated CH₄ contributions from the waste sector

- (a) w-CH₄ tracer: rather evenly distributed CH₄ mole fractions, despite being point sources
- (b) I-CH₄ tracer: more point-like CH₄ enhancements either from waste-rich dumps or from a spatial concentration of several dumps
- (c) t-CH₄ tracer: inhomogeneous CH₄ distribution, indicating a less uniform and more varying background compared to CO₂
- (d) average GHG mixing ratios along the flown horizontal distance: measured CH₄ plume shape is not directly reproduced, but emissions from waste water plants and landfills **broaden and enhance** the simulated **c-CH₄ plume** which considers only city emissions

Achievements

- The urban GHG plume from Berlin (Germany) was detected and isolated in a wellmixed and efficiently capped boundary layer
- GHG emission rates were estimated based on sensitive in-situ measurements: CO_2 : 1.39 \pm 0.76 t s⁻¹ and CH_4 : 5.20 \pm 1.70 kg s⁻¹
- CO₂ o estimated flux is in the same order of magnitude as given in the inventories
 simulated citywide MR agree well with observed CO₂ in location and shape
- CH₄ estimated flux is ~2 times larger than the highest reported inventorial value
 - o simulated citywide MR are **substantially lower** than observed and the plume width is too narrow (*missing waste sources outside of Berlin?*)
- → Large uncertainties, especially for CH₄, are identified in bottom-up inventories at the city scale even in a highly developed country like Germany
- \rightarrow The inflow and background MR, especially for CO_{2,} need to be precisely determined when applying the mass balance approach (although Berlin is a relatively isolated city)
- → Top-down emission estimate is an important tool to verify inventorial emissions and to reveal missing sources

Outlook

Subsequent ground-based measurements and/or further airborne in-situ **observations** are needed

- in the greater Berlin area with a special focus on emission sources located outside the city boundaries
 - \rightarrow would improve the knowledge on the regional CH₄ budget with a clear attribution of waste related CH₄ emission sources and their quantification
- in different seasons
 - → would reflect the seasonal cycle of the CO₂ emissions
- in a Lagrangian flight track pattern
 - → would improve the estimation of the background variability

Thanks and feel free to contact me!

<u>Theresa.Klausner@dlr.de</u>

PhD student

The paper "Urban greenhouse gas emissions from the Berlin area: A case study using airborne CO_2 and CH_4 in situ observations in summer 2018" is also published:

DOI: https://doi.org/10.1525/elementa.411

References

AVISO GmbH and IE Leipzig, 2016: Available at

https://www.berlin.de/senuvk/umwelt/luftqualitaet/de/emissionen/download /Endbericht Emissionkataster 2015.pdf. Accessed September 30, 2019.

Bréon et al., 2015: An attempt at estimating Paris area CO₂ emissions from

atmospheric concentration measurements. Atmos Chem Phys 15(4): 1707-1724, DOI: 10.5194/acp-15-1707-2015.

CORRECTIV, 2016: Available at

https://correctiv.org/artikel/2016/03/02/muellparadies-brandenburg.

Accessed August 18, 2019.

Crippa et al., 2019: High resolution temporal profiles in the Emissions Database

for Global Atmospheric Research (EDGAR). Nature Scientific Data, submitted. Gioli et al., 2012: Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environ Pollut 164:125-131, DOI:

10.1016/j.envpol.2012.01.019. Gioli et al., 2014: Aircraft mass budgeting to measure CO₂ emissions of Rome,

Italy. Environ Monit Assess 186(4): 2053-2066, DOI: 10.1007/s10661-013-3517-4.

Gately et al., 2013: A bottom up approach to on-road CO₂ emissions estimates: Improved spatial accuracy and applications for regional planning. Environ Sci Technol 47(5): 2423-2430, DOI: 10.1021/es304238v.

Gately and Hutyra, 2017: Large Uncertainties in Urban-Scale Carbon Emissions.

J Geophys Res-Atmos 122(20): 11242–11260, DOI: 10.1002/2017JD027359. Heimburger et al., 2017: Assessing the optimized precision of the aircraft mass

balance method for measurement of urban greenhouse gas emission rates through averaging. *Elementa: Science of the Anthropocene* 5(26), DOI: 10.1525/elementa.134.

Helfter et al., 2016: Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmos Chem Phys 16(16): 10543–10557, DOI: 10.5194/acp-16-10543-2016.

Karion et al., 2013: Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys Res Lett 40(16): 4393-4397, DOI: 10.1002/grl.50811.

Kennedy et al., 2012: Cities reducing their greenhouse gas emissions. Energ Policy 49: 774–777, DOI: 10.1016/j.enpol.2012.07.030.

Kuc et al., 2003: Anthropogenic emissions of CO₂ and CH₄ in an urban environment. Appl Energ 75(3-4): 193-203, DOI: 10.1016/S0306-2619(03)00032-1.

Kuenen et al., 2014: TNO-MACC II emission inventory, a multi-year (2003-2009) consistent high-resolution European emission inventory for air quality modelling. Atmos Chem Phys 14(20): 10963-10976, DOI: 10.5194/acp-14-10963-2014.

Liu et al., 2014: How much of the world's land has been urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecol 29(5): 763-771, DOI: 10.1007/s10980-014-0034-y.

Mallaun et al., 2015: Calibration of 3-D wind measurements on a single-engine research aircraft. Atmos Meas Tech 8(8): 3177-3196, DOI: 10.5194/amt-8-3177-2015. Marcotullio et al., 2013: The geography of global urban greenhouse gas emissions: An

exploratory analysis. Climatic Change 121(4): 621-634, DOI: 10.1007/s10584-013-0977-z. Mays et al., 2009: Aircraft-based measurements of the carbon footprint of Indianapolis.

Environ Sci Technol 43(20): 7816-7823, DOI: 10.1021/es901326b.

McDonald et al., 2014: High-resolution mapping of motor vehicle carbon dioxide emissions. J Geophys Res-Atmos 119(9): 5283-5298, DOI: 10.1002/2013JD021219.

MLUL, 2017: Available at

https://mlul.brandenburg.de/cms/media.php/lbm1.a.3310.de/Lagebericht-

Abwasserbeseitigung 2017.pdf. Accessed August 18, 2019. NOAA, 2019: Available at

24(6): 1051-1071, DOI: 10.1007/s11027-018-9821-0.

www.esrl.noaa.gov/gmd/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts.

Accessed August 02, 2019. O'Shea et al., 2014: Area fluxes of carbon dioxide, methane, and carbon monoxide derived

from airborne measurements around Greater London: A case study during summer 2012. J Geophys Res-Atmos 119(8): 4940–4952, DOI: 10.1002/2013JD021269. Pitt et al., 2019: Assessing London CO₂, CH₄ and CO emissions using aircraft measurements and dispersion modelling. Atmos Chem Phys 19(13): 8931-8945, DOI: 10.5194/acp-19-

8931-2019. Ren et al., 2018: Methane Emissions From the Baltimore-Washington Area Based on Airborne Observations: Comparison to Emissions Inventories. J Geophys Res-Atmos

123(16): 8869-8882, DOI: 10.1029/2018JD028851. Scherer et al., 2019: Urban Climate Under Change [UC]² - A National Research Programme for Developing a Building-Resolving Atmospheric Model for Entire City Regions. Meteorol Z

28(2): 95-104, DOI: 10.1127/metz/2019/0913. Statistisches Bundesamt, 2018: Available at www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/05-staedte.html. Accessed

September 25, 2019. Stohl, 1998: Computation, accuracy and applications of trajectories - A review and bibliography. Atmospheric Environment 32(6): 947-966, DOI: 10.1016/S1352-

2310(97)00457-3. UN, 2018: Available at https://population.un.org/wup/Publications/. Accessed September

25, 2019. UNFCCC, 2015: Available at https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.

Accessed September 25, 2019. WMO, 2020: Available at https://library.wmo.int/doc_num.php?explnum_id=10211

Accessed March 27, 2020. Zimnoch et al., 2019: Quantification of carbon dioxide and methane emissions in urban areas: Source apportionment based on atmospheric observations. Mitig Adapt Strat Gl