Rheological heterogeneities on the deep subduction interface, and possible relationships to Episodic Tremor & Slow Slip (ETS)

Whitney Behr (wbehr@ethz.ch), EGU SHARING GEOSCIENCE ONLINE 2020, Slides for Discussion

Students and Collaborators

Student **Collaborators**

Carolyn Tewksbury-Christle

Robert Blass

Claudio Cannizzaro

Faculty Collaborators

Danny Stockli

Quick Overview of ETS in Modern Subduction Zones

Example from Cascadia

- Occurs at and around mantle wedge corner
- Correlates with seismic low velocity layer

Audet & Kim, 2016; modified from Bostock et al, 2012

Quick Overview of ETS in Modern Subduction Zones

Key characteristics & what they might mean...

Shear slip on plate interface —> Not just dilational cracking

Highly sensitive to external stress perturbations (e.g. tides) —> *Involves high fluid pressures*

Co-located with seismic low velocity/high —> *Involves high fluid contents & pressures* Vp-Vs ratio layer in most subduction zones

Does not achieve dynamic rupture speeds -> Requires a mechanism for 'damping' or seismic arrest

Focus for Today

• We've thus far studied two rock record examples of deep subduction interface rheological heterogeneities in detail

Key Messages from These Field Areas...

Progressive hydration produces viscous matrix with relict embedded frictional blocks

Progressive dehydration produces frictional mafic blocks in a viscous matrix

Condrey Mountain Window, southern Oregon/northern California

Geochronology + structural data resolve cryptic subduction interface thrusts

Interface thrust characteristics: highly attenuated and viscously sheared lower contact

Scraggy Mtn thrust nappe

Dislocation glide in antigorite

Linear viscous pressure solution in GMS

Interface thrust characteristics: interior deformed primarily by brittle shear fracturing

Interface thrust characteristics: interior deformed primarily by brittle shear fracturing

Interpretation of CMW ductile thrusts

Progressive hydration produces viscous antigorite serpentine matrix surrounding brittle relict ultramafic blocks

Cycladic Blueschist Unit, Syros Island, Greece

Kotowski & Behr, Geosphere 2019

calcite marble dolomitic marble mica schist greenschists HP metabasite metavolcanics serpentinite

Modified from Keiter et al. 2011

Evidence for frictional-viscous deformation associated with eclogite formation

Behr et al, Geology 2018 & Kotowski and Behr, Geosphere 2019

Interpretation of Syros mafic lenses

Two rock record examples of deep subduction interface rheological heterogeneities

Shear slip on plate interface —> Not just dilational cracking Highly sensitive to external stress perturbations (e.g. tides) —> *Involves high fluid pressures* Co-located with seismic low velocity/high —> *Involves high fluid contents & pressures* Vp-Vs ratio layer in most subduction zones Does not achieve dynamic rupture speeds \rightarrow Requires a mechanism for seismic arrest

Two rock record examples of deep subduction interface rheological heterogeneities

```
Shear slip on plate interface −> Not just dilational cracking ✓
           Highly sensitive to external stress perturbations (e.g. tides) —> Involves high fluid pressures
Co-located with seismic low velocity/high —> Involves high fluid contents & pressures Vp-Vs ratio layer in most subduction zones
 Does not achieve dynamic rupture speeds -> Requires a mechanism for seismic arrest
```

But how do we assess compatibility with slow slip events in terms of sizes and rates?

- Estimating displacement-area relationships (i.e. seismic moment)
- Numerical modeling of frictional-viscous systems

Estimating maximum seismic moment from displacement-area calculations

cf. Kotowski & Behr, Geosphere 2019 for more information

Numerical modeling of frictional-viscous heterogeneity & earthquake slip

Seismo-thermo-mechanical modeling, with adaptable time-stepping (cf. Herrendörfer et al., 2018)

Numerical modeling of frictional-viscous heterogeneity & earthquake slip

- Over what viscosities, sizes, and spacings can the inclusions be loaded to failure?
- If a failure event nucleates within/around the inclusions, can they propagate through the matrix and load nearby inclusions?
- If ruptures propagate through the model, what are the rates, and which conditions produce slow slip vs. 'regular earthquakes' vs. aseismic creep?

Numerical modeling of frictional-viscous heterogeneity & earthquake slip

Key Results: models run around a threshold viscosity (i.e. the frictional-viscous transition) yield a wide range of seismic slip behaviours that span much of the slow slip spectrum

Conclusions

- In the CMW, hydration reactions led to progressive serpentinization and generated frictionalviscous deformation of peridotite bodies entrained in the subduction shear zone
- In the CBU on Syros Island, dehydration reactions in MORB-affinity basalts led to progressive development of strong brittlely deformed eclogitic lenses within a weaker viscous matrix.
- The sizes and displacement magnitudes of these frictional-viscous heterogeneities observed in the field are compatible with estimates of seismic moment from modern ETS events
- Adaptive time-stepping numerical modeling of rigid clasts within a viscous matrix suggests that frictional-viscous heterogeneities can produce a wide spectrum of slow transient slip events
- General conclusion: distributed viscous deformation with embedded frictional lenses is ubiquitous in the rock record, can exhibit mixed velocity-weakening and -strengthening behavior, and is thus a promising explanation for unconventional seismicity

Published References

- Audet, P. and Kim, Y., 2016. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: A review. Tectonophysics, 670, pp.1-15.
- Behr, W.M., Kotowski, A.J. and Ashley, K.T., 2018. Dehydration-induced rheological heterogeneity and the deep tremor source in warm subduction zones. Geology, 46(5), pp.475-478.
- Bletery, Q., Thomas, A.M., Hawthorne, J.C., Skarbek, R.M., Rempel, A.W. and Krogstad, R.D., 2017. Characteristics of secondary slip fronts associated with slow earthquakes in Cascadia. Earth and Planetary Science Letters, 463, pp.212-220.
- Bostock, M.G., Royer, A.A., Hearn, E.H. and Peacock, S.M., 2012. Low frequency earthquakes below southern Vancouver Island. Geochemistry, Geophysics, Geosystems, 13(11).
- Gomberg, J. and Cascadia 2007 and Beyond Working Group, 2010. Slow-slip phenomena in Cascadia from 2007 and beyond: A review. Bulletin, 122(7-8), pp.963-978.
- Herrendörfer, R., Gerya, T. and Van Dinther, Y., 2018. An invariant rate-and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations. Journal of Geophysical Research: Solid Earth, 123(6), pp.5018-5051.
- Ide, S., Beroza, G.C., Shelly, D.R. and Uchide, T., 2007. A scaling law for slow earthquakes. *Nature*, 447(7140), pp.76-79.
- Kotowski, A.J. and Behr, W.M., 2019. Length scales and types of heterogeneities along the deep subduction interface: Insights from exhumed rocks on Syros Island, Greece. Geosphere, 15(4), pp.1038-1065.
- Michel, S., Gualandi, A. and Avouac, J.P., 2019. Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature, 574(7779), pp.522-526.