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Quick Overview of ETS in Modern Subduction Zones

Example from Cascadia
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Gomberg, GSAB 2010

Audet & Kim, 2016; 
modified from Bostock et al, 2012

• Occurs at and around mantle wedge corner 
• Correlates with seismic low velocity layer

• Slow slip tracked 
over ~15 day 
interval
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Quick Overview of ETS in Modern Subduction Zones

Key characteristics & what they might mean…
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Shear slip on plate interface —> Not just dilational cracking

Highly sensitive to external stress 
perturbations (e.g. tides)

—> Involves high fluid pressures

Co-located with seismic low velocity/high 
Vp-Vs ratio layer in most subduction zones

—> Involves high fluid contents & pressures

Does not achieve dynamic rupture speeds —> Requires a mechanism for `damping’ or 
      seismic arrest
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Focus for Today
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Progressive dehydration produces frictional 
mafic blocks in a viscous matrix

Progressive hydration produces viscous 
matrix with relict embedded frictional blocks

Syros Island, Greece

Condrey Mtn, n. CA

Key Messages from These Field Areas…

• We’ve thus far studied two rock record examples of deep subduction interface 
rheological heterogeneities in detail
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Observations from Two Exhumed Subduction Shear Zones /1

Condrey Mountain Window, southern Oregon/northern California
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Observations from Two Exhumed Subduction Shear Zones /1

Geochronology + structural data resolve cryptic subduction interface thrusts
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Observations from Two Exhumed Subduction Shear Zones /1

Interface thrust characteristics: highly attenuated and viscously sheared lower contact
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250 m

Scraggy Mtn thrust nappe

Dislocation glide in antigorite Linear viscous pressure solution in GMS



EGU Sharing Geoscience Online, 2020 W.M. Behr
SGT
ETHZ

Observations from Two Exhumed Subduction Shear Zones /1

• Body Level One 
• Body Level Two 

• Body Level Three 
• Body Level Four 

• Body Level Five
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Interface thrust characteristics: interior deformed primarily by brittle shear fracturing
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Observations from Two Exhumed Subduction Shear Zones /1
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relict peridotite 
grain

dilational shear fracture

dilational shear fracture 

Interface thrust characteristics: interior deformed primarily by brittle shear fracturing
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Observations from Two Exhumed Subduction Shear Zones /1

11

Interpretation of CMW ductile thrusts

Progressive hydration produces viscous antigorite serpentine 
matrix surrounding brittle relict ultramafic blocks

entrained relict peridotite lens
sheared, dehydrating metasediments

sheared
antigorite

brittlely fractured
massive serpentinite

Guillot et al., 
Tectonophysics 
2015
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Observations from Two Exhumed Subduction Shear Zones /2

Cycladic Blueschist Unit, Syros Island, Greece
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Kotowski & Behr, Geosphere 2019
Modified from 
Keiter et al. 
2011
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Observations from Two Exhumed Subduction Shear Zones /2

Evidence for frictional-viscous deformation associated with eclogite formation
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Behr et al, Geology 2018  & Kotowski and Behr, Geosphere 2019
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Observations from Two Exhumed Subduction Shear Zones /2

Interpretation of Syros mafic lenses
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Progressive dehydration produces brittle 
eclogite blocks in a viscous matrix
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Compatibility of Observed Heterogeneities with ETS Events…?
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Two rock record examples of deep subduction interface rheological heterogeneities

Shear slip on plate interface —> Not just dilational cracking

Highly sensitive to external stress 
perturbations (e.g. tides)

—> Involves high fluid pressures

Co-located with seismic low velocity/high 
Vp-Vs ratio layer in most subduction zones

—> Involves high fluid contents & pressures

Does not achieve dynamic rupture speeds —> Requires a mechanism for seismic arrest ?
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Compatibility of Observed Heterogeneities with ETS Events…?

16

Two rock record examples of deep subduction interface rheological heterogeneities

But how do we assess compatibility with slow slip events in terms of sizes and rates?

Shear slip on plate interface —> Not just dilational cracking

Highly sensitive to external stress 
perturbations (e.g. tides)

—> Involves high fluid pressures

Co-located with seismic low velocity/high 
Vp-Vs ratio layer in most subduction zones

—> Involves high fluid contents & pressures

Does not achieve dynamic rupture speeds —> Requires a mechanism for seismic arrest

• Estimating displacement-area relationships (i.e. seismic moment) 

• Numerical modeling of frictional-viscous systems

?
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Compatibility of Observed Heterogeneities with ETS Events /1
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cf. Kotowski & Behr, 
Geosphere 2019 for 
more information
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Compatibility of Observed Heterogeneities with ETS Events /2

Numerical modeling of frictional-viscous heterogeneity & earthquake slip
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Seismo-thermo-mechanical modeling, with adaptable time-stepping (cf. Herrendörfer et al., 2018)

rigid inclusions:
rate & state friction

viscous matrix:
linear viscous + rate & state friction

Model Starting Conditions
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Compatibility of Observed Heterogeneities with ETS Events /2

Numerical modeling of frictional-viscous heterogeneity & earthquake slip

19

• Over what viscosities, sizes, and spacings can the 
inclusions be loaded to failure? 

• If a failure event nucleates within/around the 
inclusions, can they propagate through the matrix 
and load nearby inclusions? 

• If ruptures propagate through the model, what are 
the rates, and which conditions produce slow slip 
vs. 'regular earthquakes’ vs. aseismic creep?

rigid inclusions:
rate & state friction

viscous matrix:
linear viscous + rate & state friction

Model Starting Conditions
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Compatibility of Observed Heterogeneities with ETS Events /2

Numerical modeling of frictional-viscous heterogeneity & earthquake slip
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Key Results: models run around a threshold viscosity (i.e. the frictional-viscous transition) yield 
a wide range of seismic slip behaviours that span much of the slow slip spectrum

Behr, Gerya, Cannizzaro & Blass, in prep
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colored symbols are modeled slip events
threshold viscosity = 5e18

cf. Ide et al. 2003, 
Bletery et al., 2017, & 
Michel et al. 2019 for 
observed slow slip 
events plotted here
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Conclusions
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• In the CMW, hydration reactions led to progressive serpentinization and generated frictional-
viscous deformation of peridotite bodies entrained in the subduction shear zone 

• In the CBU on Syros Island, dehydration reactions in MORB-affinity basalts led to progressive 
development of strong brittlely deformed eclogitic lenses within a weaker viscous matrix.  

• The sizes and displacement magnitudes of these frictional-viscous heterogeneities observed in 
the field are compatible with estimates of seismic moment from modern ETS events 

• Adaptive time-stepping numerical modeling of rigid clasts within a viscous matrix suggests that 
frictional-viscous heterogeneities can produce a wide spectrum of slow transient slip events 

• General conclusion: distributed viscous deformation with embedded frictional lenses is 
ubiquitous in the rock record, can exhibit mixed velocity-weakening and -strengthening 
behavior, and is thus a promising explanation for unconventional seismicity
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