ARC30 An Arctic Ocean Observation **O**perator for 6.9 GHz

Related publications:

<u>The Arctic Ocean Observation Operator for 6.9 GHz (ARC30) – Part 1:</u> <u>How to obtain sea-ice brightness temperatures at 6.9 GHz from climate</u> <u>model output</u>, *The Cryosphere Discussions, in review.*

<u>The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2:</u> <u>Development and evaluation</u>, *The Cryosphere Discussions, in review.*

<u>@climate_clara</u>

Clara Burgard

study conducted when affiliated with the Max Planck Institute for Meteorology, now affiliated with Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht

Dirk Notz

Institute of Oceanography, Hamburg University, and Max Planck Institute for Meteorology Rasmus T. Tonboe Danish Meteorological Institute Leif T. Pedersen Danish Technological University-Space

Research conducted with funding by the ESA CCI Sea Ice Phase 2

clara.burgard@hzg.de

What you should take home...

The relationship between real, observed and simulated sea-ice concentration is ambiguous due to **observational uncertainty**

We have developed an observation operator to circumvent observational uncertainty introduced by retrieval algorithm.

- Although the climate model output is simple, we are able to construct a realistic observation operator for the Arctic Ocean at 6.9 GHz
- Differences between simulated and measured brightness temperatures are mainly linked to differences between simulated and real sea-ice concentration => evaluation of **retrieval algorithms** and **climate model** possible

Outlook: ARC3O can be used for first guess in data assimilation Deeper insight possible through extension of ARC3O to other frequencies

Interested in more details? They are just a few clicks away...

Easy to apply

to any climate

model output!

We have developed an observation operator to circumvent observational uncertainty introduced by retrieval algorithms

Click below on the section you are interested in to read more

Overview

- 1 The problem
- 2 Our solution
- **3** Some basics
- 4 The method

5 Results

The problem: The presence of several observational products (e.g. for sea-ice concentration) is a challenge for climate model evaluation...

Observational products of sea-ice concentration are retrieved from microwave brightness temperatures. But different retrievals result in

Our solution: An observation operator to circumvent observational uncertainty

Click below on the section you are interested in to read more

Overview

- 1 The problem
- 2 Our solution
- 3 Some basics
- 4 The method
- 5 Results

Previous approaches of observation operators for the Arctic Ocean focussed on winter and a variety of frequencies [Scott et al., 2012; Richter et al. 2018] **NEW HERE**: 6.9 GHz, applicable to climate model output, all seasons

> An observation operator translates the simulated climate state (incl. sea-ice concentration, surface temperature, snow thickness, atmospheric properties,...) into **one** brightness temperature, which can be compared to the **one** measured brightness temperatures

Retrieved 1 Retrieved 2

operator

Observation

-pd

Simulated

Some basics: What to consider when simulating Arctic Ocean brightness temperatures at 6.9 GHz

- Click below on the section you are interested in to read more
- **Overview**
- 1 The problem
- 2 Our solution
- **3** Some basics
- 4 The method
- **5** Results

Brightness temperature T_b

depends on frequency and type of medium

Why 6.9 GHz?

High contrast between water and ice Low scattering inside the ice Effect of dry snow is small Effect of atmosphere is small

More details in: <u>The Arctic Ocean Observation Operator for 6.9 GHz (ARC30) – Part 1: How to obtain sea-ice brightness</u> temperatures at 6.9 GHz from climate model output, The Cryosphere Discussions, in review.

The method: The workflow of the Arctic Ocean Observation Operator based on climate model output and microwave emission models

Max-Planck-Institut ür Meteorologie

sea ice

MEMLS: Wiesmann and Mätzler [1998], Tonboe et al. [2006], modif. by Burgard (1)(2) AMSR Ocean algorithm by Wentz and Meissner [2000], modif. by Burgard

Results: Simulated and measured brightness temperatures agree well in cold seasons and less well in summer.

Max-Planck-Institut für Meteorologie

Click below on the

section you are

interested in to

1 The problem

2 Our solution

3 Some basics

4 The method

5 Results

read more

Overview

sea ice

(2) Measured by AMSR-E from space

assimilation based on NASA Team sea-ice concentration

assimilation

based on

Difference between simulated⁽¹⁾ and measured⁽²⁾ brightness temperature [K]

Differences in cold seasons mainly driven by sea-ice concentration choice for assimilation. Differences in summer also depend on simulated melt-pond fraction.

More details in: The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation, The Cryosphere Discussions, in review.

(1) Two assimilation runs by MPI-ESM-LR nudged to Bootstrap sea-ice concentration and NASA Team sea-ice concentration

