

Closing the global sea level budget by combining multi-mission altimetry and GRACE(-FO) data

Bernd Uebbing¹, Christina Lück¹, Roelof Rietbroek¹, Kristin Vielberg¹, and Jürgen Kusche¹

1) Institute for Geodesy and Geoinformation, University of Bonn, Germany

04.05.2020

© Authors. All rights reserved.

What is investigated?

- We present recent enhancements and updates for the global fingerprint joint inversion combining GRACE gravimetry and alongtrack altimetry data with respect to the inversion used in Uebbing et al. (2019)
 - Use of new RL06 GRACE and GRACE follow-on (GRACE-FO) data
 - Improved representation and modeling of individual contributions of the sea level budget
- Closure of the sea level budget is achieved within 0.1 mm/yr
 - Residual signal mainly includes unmodeled contributions from highly variable ocean current and eddy regions

Inversion: Input Data

Complementary Datasets

- Altimetry → mass+steric sea level
 - Along-track Jason-1/-2/-3 altimetry data from RADS (Scharroo et al., 2013)
- GRACE(-FO) → ocean mass changes
 - Unsolved, unfiltered monthly GRACE and GRACE-FO normal equations
 - ITSG2018-RL06 normal equations up to degree and order 120 (Kvas et al., 2019)

Global Inversion Method

- Idea of the global fingerprint inversion (Rietbroek et al., 2016)
 - Forward modeling of gravitationally-elastic rotationally consistent sea level patterns → fingerprints
 - Consistent treatment of reference frames
 - Time-variable amplitudes are fitted to time-invariant fingerprints

Uebbing et al. (2019) Inversion

- While the inversion in Uebbing et al. (2019) provided good quality agreement of summed global ocean mass change (OMC) in comparison with other OMC estimates
- Deficiencies with respect to
 - Data availability
 - Modeling of
 - individual mass and steric contributions

 Relatively large residual component (0.3 mm/vr) (0.3 mm/yr)

Improved Fingerprint Representation

- Mass components
 - Glaciers: 68 fingerprints (updated based on Randolph Glacier Inventory v6.0, RGIv6)
 - Hydrology: 25 leading EOFs explaining >90% of the variance based on WGHMv2.0
 (Müller Schmied et al., 2014)
 - Ice sheet fingerprints from Greenland (16) and Antarctica (27) augmented by trend patterns extracted from Ice Altimetry
 - for more on this see display D1692
 - Internal Mass Variations (IMV): 200 EOFs based on RL06 AOD1B-GAB product
- Steric components
 - 200 fingerprints for upper 700m and 50 for deep ocean below 700m based on ORA-S5 reanalysis data

Plot by Matthias Willen

Overview of Inversion Updates

	Uebbing et al. (2019)	Updated Inversion (this study)
Gravity Data	GFZ RL05 GRACE	ITSG-2018 (RL06) GRACE(-FO)
Altimetry Data	Jason-1/-2	Jason-1/-2/-3
Hydrology	60 EOFs from WGHMv1	25 EOFs from WGHMv2
Antarctic Ice Sheet	27 basins (uniform melting)	27 basins (non-uniform melting)
Greenland Ice Sheet	16 basins (uniform melting)	16 basins (non-uniform melting)
Land Glaciers	16 basins (only major glaciers)	68 basins (RGIv6)
Steric	200 ORA-P5 (full depth only)	250 ORA-S5 (>700m and <700m)
Intern. Mass Var.	10 EOFs (RL05 AOD1B-GAD)	200 EOFs (RL06 AOD1B-GAB)
Residual / "other"	100 EOFs from residuals	directly computed after 1st iteration

Global Sea Level Budget

- New and extended inversion provides better understanding of individual sea level drivers
- Closed budget
 - Residual (= ocean dynamics) in the order of 0.1 mm/yr

Inversion Residual Signal Content

- The residual component of the updated inversion with respect to altimetry (denoted here as "ocean dynamics") mainly includes variations of the major current systems and eddy regions
 - Not modeled by any of the fingerprints so far
- All significant signals are captured within the inversion
 - The percentage of explained variance is low and similar for individual EOFs

Extending the Inversion Period

- Currently the inversion results are limited to the availability of GRACE(-FO) data
 - Missing months and an 11 month gap
- First experiments using time-variable gravity (TVG) derived from SLR are promising (not shown here)
 - Also add Swarm TVG
 - See display D1550

 Further extensions with respect to additional altimetry missions and inclusion of Argo profile data for better separating steric and mass contributions

Conclusions and Outlook

- The updated and extended inversion allows to close the sea level budget within about 0.1 mm/yr
 - Results fit with individually processed data products
 - Significant over estimation of the deep ocean steric contribution by ORA-S5?
 - Requires further investigation
 - Introduce additional Argo profile data to better separate the steric contribution (see display D2806)
- Residual signals are mainly due to ocean dynamics contributions from dominant major current and eddy regions
 - Examine possibilities to better model these effects in the future
- Significant amount of missing results due to missing monthly GRACE solutions and gap between GRACE and GRACE-FO
 - Incorporate Swarm and SLR data in order to estimate solutions for these months

Literature

- Uebbing, B., J. Kusche, R. Rietbroek, and F. W. Landerer. "Processing Choices Affect Ocean Mass Estimates From GRACE." Journal of Geophysical Research: Oceans 124, no. 2 (2019): 1029–44. https://doi.org/10.1029/2018JC014341.
- Rietbroek, Roelof, Sandra-Esther Brunnabend, Jürgen Kusche, Jens Schröter, and Christoph Dahle. "Revisiting the Contemporary Sea-Level Budget on Global and Regional Scales." Proceedings of the National Academy of Sciences 113, no. 6 (2016): 1504–9. https://doi.org/10.1073/pnas.1519132113.
- Kvas, Andreas, Saniya Behzadpour, Matthias Ellmer, Beate Klinger, Sebastian Strasser, Norbert Zehentner, and Torsten Mayer-Gürr. "ITSG-Grace2018: Overview and Evaluation of a New GRACE-Only Gravity Field Time Series." Journal of Geophysical Research: Solid Earth 124, no. 8 (2019): 9332–44. https://doi.org/10.1029/2019JB017415.
- Scharroo, Remko, Eric Leuliette, John Lillibridge, Deirde Byrne, Marc Naeije, and Gary Mitchum. "RADS: Consistent Multi-Mission Products," 710:69, 2013. http://adsabs.harvard.edu/abs/2013ESASP.710E..69S.
- Müller Schmied, H., S. Eisner, D. Franz, M. Wattenbach, F. T. Portmann, M. Flörke, and P. Döll.
 "Sensitivity of Simulated Global-Scale Freshwater Fluxes and Storages to Input Data, Hydrological Model Structure, Human Water Use and Calibration." Hydrol. Earth Syst. Sci. 18, no. 9 (September 10, 2014): 3511–38. https://doi.org/10.5194/hess-18-3511-2014.