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Introduction to Rupture Phase Diagrams

(a) strike-slip in full space

As we know, the behavior of dynamic rupture varies
with slip-weakening law, the size of nucleation asperity
and initial stress condition. Based on the vast number
of simulation using BIEM, Xu Jiankuan and Chen
Xiaofei (2015) obtained rupture phase diagrams.
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There are three kind of rupture styles. Supershear
rupture with supershear speed and SubRayleigh rupture
will subshear speed will keep propagation going until
they arrive outside interference, so these two kind of
rupture styles are called runaway rupture. Self- g H2 0% 596 B8 1

?u‘restinfgy rupture can be. autonomously arrested by Rupture phase diagrams in full-space
itself without any outside interference. ( Xu Jiankuan and Chen Xiaofei, 2015)
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Wen Jian and Chen Xiaofei (2018)
investigated seismic spectra of  different
rupture earthquake and found that the seismic
spectra of runaway rupture and self-arresting
rupture have different characteristic.

self-arresting rupture has smooth seismic
spectra and simple source time function
(STF). However, runaway rupture has
complicated STF, and holes exist on seismic
spectra at specific frequency.

Next, we will calculate seismic spectra and
source time function of many earthquakes
to support it .
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Source time function and seismic spectra
(Wen Jian and Chen Xiaofei, 2018)



Data and resources

We totally use waveform data of
more than 30000 earthquakes
(about 135-165 km depth)from
2012 to 2018 happened in
Bucaramanga nest . Seismic
spectral and stress drop of 1545
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The primary source of data for this (red triangles are 12 stations, (color circles are 1545
earthquakes are in blue rectangle ) earthquakes, gray circles

study comes from the catalog and
waveform data from the Red Sism-
ologica Nacional de Colombia (RSNC). The catalog data and waveforms

data are available at https://www2.sgc.gov.co/sismos/sismos/ultimos-sismos.html

are all earthquakes )




Empirical Green Function (EGF) Method to Extract Seismic
Spectra and Estimate Stress Drop

The basic theory: two collocated earthquakes of different magnitudes are assumed to
experience identical propagation and site effects. So the smaller earthquakes can be
used to cancel out these effects as the bigger earthquake’ Green function empirically.

Earthquake seismogram, u(t), is the convolution of the radiation from the earthquake

source, s(t), with the combined propagation effects, G(t), along the path and the
instrument response, r(t).

u(t)=s(t)*G(t)*r(t) Using Brune (1970) or Boatwright (1980)
)

source model, we can obtain
In frequency domain

u(f)=s(f)G(f)r(s

The spectra ratio Y, (f ) _ M I fcs Boatwright model, 71 = 2
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We calculated steady mean cross-correlation coefficient . For each recording, if mean
cross-correlation coefficient minus its cross-correlation coefficient i1s more than 0.35, we
won’t use this recording and recalculate mean cross-correlation coefficient. (before
calculating cross-correlation coefficient, we already selected high SNR recording)



We use multi-taper spectral analysis
method to obtain stable seismic spectra
and Nelder-Meade method to fifing
seismic spectra. We refer to Viegas
(2010) and Abercrombie (2014) to
obtain more stable results.
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We also refer to Abercrombie (2014) to obtain
the weighted mean of corner frequency and the
standard deviation of the weighted mean.

The weighted mean of corner frequency
2
c 2
ZZ_ 1/var,

The standard deviation of the
weighted mean

Var, =

1
> 1/var;

We use Eshelby (1957) to calculate
stress strop and the standard deviation
of stress strop

Stress strop
_IMf;
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The standard deviation of stress strop
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Results

In Bucaramanga nest, we finally obtain seismic spectra
and STF of 633 ecarthquakes, 433 of which are self-
arresting rupture and 295 of which are runaway rupture.
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Seismic spectra of self-arresting rupture
earthquakes fitted well by omega-square model
are smooth and its source time function are
simple (Fig. a). Runaway rupture earthquakes
has complicated source time function and holes
exist on seismic spectra at  specific
frequency(Fig. b).

The source time function of a few runaway
rupture earthquakes appear two separate
peeks(Fig ¢). This kind of earthquakes maybe
be caused by simultaneous slip on two close
rupture zone.
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Because corner frequency and stress drop are
based on source model, we only calculated
corner frequency and stress drop of self-
arresting rupture earthquakes.

In Bucaramanga nest, the highest corner
frequency decrease with magnitude and corner
frequency of same magnitude earthquakes vary
a lot. Stress drop increase with seismic moment
and the range variation of earthquake’s stress
drop with same seismic moment is up to 2
order of magnitude. Most of earthquakes’ stress
drop are between tens and hundreds Mpa and
only a few earthquakes’ stress drop 1s over
1000 Mpa, median stress drop of which is
about 100 Mpa and spatial distribution of
which has no obvious characteristics.
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Conclusions and Discussion

In Bucaramanga nest, there are two kind of rupture styles earthquakes.
self-arresting rupture earthquakes fitted well by omega-square model are
smooth and its source time function are simple. Runaway rupture
earthquakes has complicated source time function and holes exist on
seismic spectra at specific frequency

In Bucaramanga nest, Stress drop increase with seismic moment and the
range variation of earthquake’s stress drop with same seismic moment is
up to 2 order of magnitude. Most of earthquakes’ stress drop are
between tens and hundreds Mpa and only a few earthquakes’ stress drop
is over 1000 Mpa, median stress drop of which is about 100 Mpa.
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