Investigating the climate predictability in the Southern Ocean using global and regional coupled models

E. Moreno-Chamarro\(^1\), D. Verfaillie\(^1,2\), H. Goosse\(^2\), P. Ortega\(^1\), T. Fichefet\(^2\), F. Massonnet\(^2\), F. Klein\(^2\), C. Pelletier\(^2\), and G. Van Achter\(^2\)

\(^1\) Earth Sciences Dept, Barcelona Supercomputing Center (BSC), Barcelona, Spain
\(^2\) Université catholique de Louvain (UCL), Earth and Life Institute (ELI), Georges Lemaître Centre for Earth and Climate Research (TECLIM), Louvain-la-Neuve, Belgium

EGU 2020, Session CL3.2 - 6 May 2020
The **PARAMOUR** project (2019-2022)

Decadal Predictability and vAriability of polar climate: the Role of AtMosphere-Ocean-cryosphere mUltiscale inteRactions

Main goals: 1. reveal fundamental drivers of **climate variability**
2. assess **decadal predictability** in polar regions

→ Using **coupled atmosphere-ocean-sea ice-ice sheet regional climate models (RCMs)** driven by global climate models (GCMs) over **3 domains**

Greenland & N. Atlantic
Southern Ocean & Antarctica
Totten Glacier
Results: predictability in the EC-Earth GCM (DCPP)

→ significant skill in some regions, also for long forecast times

→ some added-value of DCPP over historical runs

→ some skill beyond persistence, especially for long forecast times

Anomaly Correlation Coefficient (ACC) of model ensemble mean vs GHCN-ERSST-GISS surface temperature (combined SST-SAT) for the Southern Ocean (south of 40°S) evaluated over the period 1961-2018 using annual means. a-c) ACC of DCPP. d-f) ACC difference of DCPP with the historical simulations (DCPP-historical). g-i) ACC difference of DCPP with a simple persistence forecast (DCPP-persistence). Dots indicate significant correlation (a-c) and significant difference of correlations (d-i) at 95% level. Missing values in observations are masked in grey.
Results: predictability in the EC-Earth GCM (DCPP)

→ patchy significant skill in some regions
→ potential impact on ice-shelf predictability?

→ some added-value of DCPP over historical runs

→ some skill beyond persistence, especially for long forecast times

Anomaly Correlation Coefficient (ACC) of model ensemble mean vs EN4 potential ocean temperature at 300 m depth for the Southern Ocean (south of 40°S) evaluated over the period 1960-2016 using annual means. a-c) ACC of DCPP. d-f) ACC difference of DCPP with the historical simulations (DCPP-historical). g-i) ACC difference of DCPP with a simple persistence forecast (DCPP-persistence). Dots indicate significant correlation (a-c) and significant difference of correlations (d-i) at 95% level. Missing values in observations are masked in grey.
Work in progress

- Coupled atmosphere-ocean-sea ice-ice sheet RCM development over the Southern Ocean and Antarctica
 → Session CR5.4, [EGU2020-5647](https://doi.org/10.1002/2020EG000215)

 A circumpolar coupled ocean – Antarctic ice sheet configuration for investigating recent changes in Southern Ocean heat content

 Charles Pelletier, Lars Zipt, Konstanze Houbner, Hugues Goosse, Frank Pettyn, and Pierre Methot

 1. UCLouvain, Earth and Life Institute, Centre de Recherches sur la Terre et le Climat: Georges Lemaitre, Louvain-la-Neuve, Belgium
 2. Université libre de Bruxelles, Laboratoire de Glaciologie, Bruxelles, Belgium
 3. Met Office, Exeter, United Kingdom

- Totten Glacier configuration
 → Session OS1.13, [EGU2020-8075](https://doi.org/10.1002/2020EG000215) (not presented)

 Investigating the climate variability in the Totten area using NEMO-LIM regional model.

 Guillain Van Achten, Charles Pelletier, and Thierry Fichefet

 Université Catholique de Louvain, Earth and Life Institute, Earth and Climatic, Belgium (guillain.vanachten@uclouvain.be)
Preliminary conclusions

- Some **skill** in EC-Earth DCPP in predicting T° at the surface and in the ocean at depth, in some regions, for short and long forecast times → Potential impact on the **predictability of sea ice and ice shelves**
- **Added-value** in some regions compared to uninitialised runs and persistence → impact of initialisation and specific physical processes/feedbacks
- Further analyses are required, especially using **coupled RCM simulations**

Thanks!

deborah.verfaillie@uclouvain.be