

Modelling respiration pulses at rewetting as a stochastic process

Stefano Manzoni, A. Chakrawal, T. Fischer, A. Porporato, G. Vico

Questions: stefano.manzoni@natgeo.su.se

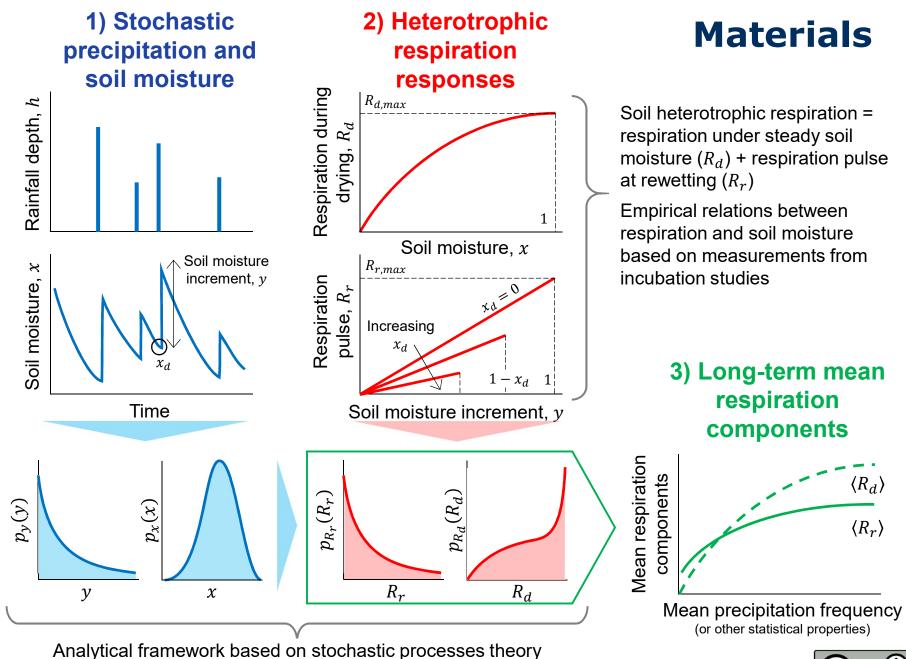
Biogeosciences

An interactive open-access journal of the European Geosciences Union

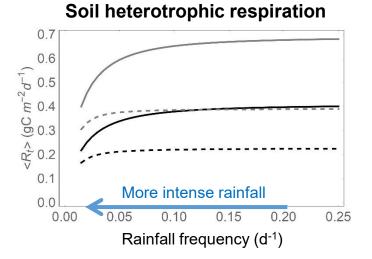
EGU.eu | EGU Publications | EGU Highlight Articles | Contact | Imprint

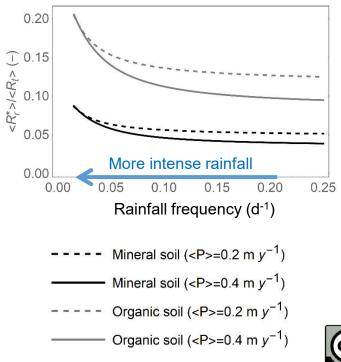
https://doi.org/10.5194/bg-2020-95 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

https://www.biogeosciences-discuss.net/bg-2020-95/#discussion


Rainfall intensification increases the contribution of rewetting pulses to soil respiration

See details in Biogeosciences Discussions




Results

Rainfall intensification described by varying both rainfall frequency and rain event depth for fixed total rainfall <P>

- Total heterotrophic respiration decreases with more intense rainfall (due to higher runoff, lower mean soil moisture)
- 2) Respiration pulses contribute more with more intense rainfall
- Higher total rainfall increases total heterotrophic respiration (solid vs. dashed lines), but decreases the contribution of respiration pulses
- 4) Soils with more organic carbon have higher total respiration and higher contribution of respiration pulses (grey vs. black lines)

Fraction of heterotrophic respiration due to pulses at rewetting

Discussion

- 1. Approach: novel perspective on heterotrophic respiration based on the theory of stochastic processes
- Advantage: analytical relations between statistical properties of respiration and statistical properties of rainfall → suitable approach for climate change scenarios
- 3. Prediction: respiration pulses contribute more to total heterotrophic respiration under more intermittent rainfall
- 4. Consequences: processes associated with pulses will gain importance under climate change—e.g., nutrient mineralization can become de-coupled from plant uptake

