The effect of urban heat island and other mesoclimatic anomalies on C stocks and CO₂ emissions in Moscow megapolis

Viacheslav Vasenev, Andrey Dolgikh, Olga Romzaykina, Inna Brianskaia, Mikhail Varentsov, Pavel Konstantinov
Why soil carbon? Soil functions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Protection of humans and environment</td>
<td>➢ Water and nutrient cycling</td>
<td>➢ Nutrient cycling</td>
</tr>
<tr>
<td>➢ Biomass production</td>
<td>➢ Ground water protection</td>
<td>➢ Water filtering and buffering</td>
</tr>
<tr>
<td>➢ General reservoir</td>
<td>➢ Basis for organisms’ life</td>
<td>➢ Biodiversity and habitat</td>
</tr>
<tr>
<td>➢ Physical basis of human activities</td>
<td>➢ Land for settlements</td>
<td>➢ Resistance and resilience</td>
</tr>
<tr>
<td>➢ Source of raw materials</td>
<td>➢ Land for agriculture</td>
<td>➢ Physical stability and support</td>
</tr>
<tr>
<td>➢ Geogenic and cultural heritage</td>
<td>➢ Deposition of raw materials</td>
<td></td>
</tr>
</tbody>
</table>

30 to 50% of distinguished soil functions are directly or indirectly related to soil carbon balance
25 to 40% of distinguished ecosystem services are directly or indirectly related to soil carbon balance.
Background

The Development of Approaches to Assess the Soil Organic Carbon Pools in Megacities and Small Settlements

V. I. Vasenev, T. V. Prokof'eva, and O. A. Makarov
Faculty of Soil Science, Lomonosov Moscow State University, Vorob'evy gory, Moscow, 119991 Russia
E-mail: vasenoy@yandex.ru
Received: May 25, 2011

SOC stocks in 0-150 cm of urban soils in Moscow
From 70 to 800 t ha\(^{-1}\)

SOC stocks in 0-150 cm of urban soils
Serebryanye Prudy village
From 900 to 1100 t ha\(^{-1}\)
How to map soil organic carbon stocks in highly urbanized regions?

V.I. Vaseney a,b,c,d,*, J.J. Stoorvogel a, I.I. Vaseney c, R. Valentini c

a Soil Geography and Landscape Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
b Environmental System Analysis Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
c Laboratory of Agroecological Monitoring, Ecosystem Modeling, and Prediction, Russian State Agricultural University, 127550, Timiryazevskaya, 49, Moscow, Russia
d Landscape Architecture and Design Group, Agrarian Faculty, Peoples’ Friendship University of Russia, 117198, Miklukho-Maklaya str., 6, Moscow, Russia

SOC stocks in 0-150 cm of urban soils in Moscow region: From 200 to 300 t ha⁻¹
Background

Seasonal dynamics in 2013-2015 (summer period gave up to up to 60% of annual emissions)

Rapid depletion in C_{org} stocks after the 1st year and stabilization by the 3rd year
Research questions and tasks

✓ Mapping and assessment of SOC stocks in Moscow megapolis
✓ Quantifying relationships between microbial (basal respiration), soil properties and meteorological parameters (lab experiment)
✓ Analyze dynamics in soil respiration, soil temperature and moisture in situ
✓ Climate monitoring and modeling

☐ Project the mesoclimatic effect by linking SOC maps to soil temperature and moisture model outcomes

Complete

Remains
Soil survey and SOC interpolation in Moscow

Sampling campaign

Soil sealing (OSM-based)

Percentage of sealed soils

SOC stocks (g m2)
Soil respiration in situ measurements

✓ Seasonal dynamics driven by soil temperature and moisture
✓ Considerable difference in CO$_2$ emissions between different surfaces (trees, shrubs, lawns) at the local scale
Lab experiment

Soil sample (2 g) + H₂O (0.1 ml / g)

22°C, 24 h
Relationships between BR, soil temperature and moisture

\[BR = 13.1 + 0.54 \, T - 0.26 \, pH + 0.4 \, SOC + 0.01 \, W \]

\[R^2_{\text{adj}} = 0.52 \]
Mesoclimatic modelling

\[\Delta x = 1 \text{ km}, 180 \times 180 \text{ grid cells, } dt = 10 \text{ sec} \]

\[\Delta x = 500 \text{ m}, 400 \times 400 \text{ grid cells, } dt = 5 \text{ sec} \]
Preliminary outcomes and next steps
✓ SOC stocks in topsoils (20 cm) of Moscow megapolis were over 8000 and SOCD ranged from 0 to 24 g/m²
✓ In situ respiration of urban soils ranged from 100 to 500 mg C-CO₂ m² h⁻¹ and was more sensitive to land cover than to the level of anthropogenic load or functional zoning
✓ Basal respiration was significantly correlated to soil temperature, SOC and pH and was not influenced by soil moisture linearly.
✓ Different approaches to model Moscow climate agree on a clear pattern with higher temperatures in the central area due to urban heat island
✓ Mesoclimatic maps will be linked to SOC map via the obtained regression equations to project dynamic changes in potential CO₂ emission from urban soils