High-resolution ensemble precipitation simulations over a small domain with complex topography

Ioannis Sofokleous¹, Adriana Bruggeman¹, Corrado Camera², George Zittis³

- ¹ Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus
- ² Dipartimento di Scienze della Terra "A. Desio" University of Milan, Milan, Italy
- ³ Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus

Objective

- This study aims to select an ensemble of the Weather Research and Forecasting model (WRF) for high-resolution hydrological applications
- Different dynamical downscaling options are evaluated:
 - 1. Domain configurations (3)
 - 2. Initialization frequencies (2)
 - 3. Physics parameterizations (18 combinations members)
- Five evaluation metrics for daily and sub-daily (30 min) precipitation and a Composite Scaled Score (CSS) are used
- A stepwise evaluation approach is followed for a 3-month simulation period
- Study area: Cyprus in the Eastern Mediterranean

Stepwise Evaluation Method

Simulation experiments

Step 1 3 domain setups × 1 initialization × 18 members × 1 month Step 2 1 domain setup × 2 initializations × 18 members × 2 months Step 3 1 domain setup × 1 initialization × 18 members × 3 months

experiments

54
72
54

Calibration period

Jan 2012
Jan 2012, May 2012
Oct 2011, Jan 2012, May 2012

Model configurations tested

Domain setup

6-1a

6-1b

Initialization frequency

5-days 30-days

Physics parameterisations

18 members

Method: Evaluation measures

For daily amounts

- 1. Bias (mm)
- 2. Mean Absolute Error (mm)
- 3. Modified Nash-Sutcliffe Efficiency
- 4. Kling-Gupta Efficiency

For 30-min amounts > 15mm (extreme events)

5. Hit rate * Bias ratio, for Bias ratio < 1 (underestimation)

or

Hit rate / Bias ratio, for Bias ratio > 1 (overestimation)

For relative performance of ensemble members

6. Composite Scaled Score (CSS): ranges from 0 (best performance) to 1 (worst performance) and combines the values of the five evaluation measures

$$CSS_i = \frac{1}{N_S} \sum_{s=1}^{N_S} \left(\frac{x_{s,i} - x_{s,worst}}{x_{s,best} - x_{s,worst}} \right)$$

i: index of member (1-18)

s: index of evaluation measure (1-5)

N_s: Number of evaluation measures (5)

 $x_{s,i}$: Value of evaluation measure s for member i

x_{s.worst}: Worst value of the measure for all members

x_{s,best}: Best value of the measure for all members

1. Domain configurations

WRF precipitation is initially evaluated for three domain setups and 18 members for January 2012

1. Domain setups

→ Least errors in WRF simulated precipitation are found with the 12-4-1 domain setup

Average value and standard deviation of MAE of accumulated precipitation (mm) for 18 members for January 2012.

Total precipitation bias (mm) for January 2012

2. Initialization frequencies

→ The shorter initialization frequency (5-days) leads to similar WRF performance with the longer frequency (30-days)

Average value and standard deviation of MAE of accumulated precipitation (mm) for 18 members for January and May 2012.

3. Physics parameterizations – Composite Scaled Score

Microphysics				6						5		16						
Cumulus	2		1		3		1		3		2					1	3	
PBL	2	1	2	1	2	1	1	2	2	1	2	1	1	2	1	2	1	2
Surf. Layer	2	91	2	91	2	91	91	2	2	91	2	91	91	2	91	2	91	2

The Composite Scaled Score (CSS) for 18 members (T1-T18) for October 2011 and January and May 2012 and the average CSS for the three months

¹Microphysics: 5 – Ferrier

6 – WRF Single Moment-6

16 – WRF Double Moment-6

²Cumulus: 1

1 – Kein-Fritch

2 – Betts-Miller-Janjic

3 – Grell-Freitas

³Planetary Boundary Layer: 1 – Yonsei University

2 – Mellor Yamada Janjic

4Surface Layer: 2 - Eta Similarity 91 - MM5 similarity

3. Physics parameterizations – Composite Scaled Score

Microphysics	6								;	5		16						
Cumulus	2		1		3		1		3		2					1	3	
PBL	2	1	2	1	2	1	1	2	2	1	2	1	1	2	1	2	1	2
Surf. Layer	2	91	2	91	2	91	91	2	2	91	2	91	91	2	91	2	91	2

- → **Microphysics:** Ferrier (T7-T12, CSS=0.56) and WRF-Double-Moment-6 (T13-T18, CSS=0.56) outperform WRF-Single-Moment-6 (T1-T6, CSS=0.43)
- → Cumulus: Betts-Miller-Janjic (CSS=0.59) outperforms Kein-Fritch (CSS=0.49) and Grell-Freitas (CSS=0.47)
- → Surface layer/ Boundary layer: Different members with the same schemes achieve different CSS. E.g. T2 with CSS=0.66 and T6 with CSS=0.26 for Yonsei University/MM5-similarity
- → **Top five members**: T2, T10, T11, T13, T18 with average CSS>0.58

Summary

- → A stepwise evaluation approach for high resolution, dynamical downscaling of ERA5 was developed and tested for a small, topographically complex domain (Cyprus):
- 1. Precipitation with a three-nested domain setup outperforms the two-nested domain setup with similar size (1488×1248 km²) and a two-nested domain setup with smaller size (826x768 km²)
- 2. Short initialization frequency (5-day) and monthly initialization lead to similar model performance. The same is not true for larger domain setups according to previous studies
- 3. A Composite Scaled Score (CSS), which combines the values of multiple evaluation metrics, makes the evaluation of WRF simulations more comprehensive than single metric evaluation.

