### **River corridors are global hotspots of microplastic pollution**

## Stefan Krause

## Holly Nel, Jennifer Drummond, Iseult Lynch, Jesus Gomez-Velez, Greg Sambrook Smith













#### Motivation: Global Plastic Pollution





## **Plastic myths:**

The majority of plastic waste is accumulated in the world's oceans

*River (catchments) are merely conduits for plastic transport* 

Residence times in rivers / catchments are too short for significant particle degradation

. . . .

#### **Predicting Global Plastic Accumulation in Rivers**





## How much?



## For how long?





# River Tame – Birmingham, UK River Tame sampling sites



© 2018 Infoterra Ltd & Bluesky, Image © 2018 The GeoInformation Group, Image © 2018 Getmapping plc





Tibbets et al., 2018

#### Lack of data / method inter-comparability!

| Study Location                 | Microplastic Count                                                               | Citation             |
|--------------------------------|----------------------------------------------------------------------------------|----------------------|
| River Tame, UK                 | 16.5 particles $100 \text{ g}^{-1}$ (mean)                                       | This study           |
| River Thames, UK               | $35 \text{ particles } 100 \text{ g}^{-1}$ (mean)                                | Horton et al. [1]    |
| Mersey/Irwell, UK              | 281–635 particles 100 g <sup>-1</sup><br>(temporal range)                        | Hurley et al. [2]    |
| Ottawa River                   | 22 particles 100 g <sup>-1</sup><br>(mean)                                       | Vermaire et al. [30] |
| Rhine-Main area                | 22.8–376 particles 100 $g^{-1}$ (spatial range)                                  | Klein et al. [31]    |
| Beijing River                  | $\frac{17.8-54.4 \text{ particles } 100 \text{ g}^{-1}}{\text{(spatial range)}}$ | Wang et al. [45]     |
| <b>Bloukrans River</b>         | 0.6–16 particles 100 g <sup>-1</sup><br>(temporal range)                         | Nel et al. [32]      |
| Elbe, Mosel, Neckar, and Rhine | $\frac{3.4-6.4}{(\text{mean})}$ particles 100 g <sup>-1</sup>                    | Wagner et al. [44]   |

#### **100 Plastic Rivers Programme**







Nel et al., 2019 MethodsX; Nel et al., in review

#### **100 Plastic Rivers Programme**





#### **100 Plastic Rivers Programme**





#### Watch this space: Plastic Evolution along Large River Networks





# Thank You!

# Stefan Krause

## Holly Nel, Jennifer Drummond, Iseult Lynch, Jesus Gomez-Velez, Greg Sambrook Smith, Anna Kukkola THE ROYAL SOCIETY











