Analysing and projecting spatial drought conditions of the Seine catchment based on ocean-atmosphere oscillations over interannual and decadal scales

K P Chun¹; Qing He¹; Bastien Dieppois²;³; Nicolas Massei⁴ and Matthieu Fournier⁴

¹ Department of Geography, Hong Kong Baptist University, Hong Kong, China
² Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Ryton-on-Dunsmore, UK
³ Department of Oceanography, University of Cape Town, Cape Town, South Africa
⁴ Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France

“Do you want to go to the seaside?
I'm not trying to say that everybody wants to go” The Kooks
Outline

• Drought 101: the Atmosphere and Ocean Oscillation
• Statistical Downscaling

• Case study: the Seine River
 • the historical drought spatiotemporal patterns
 • the projected drought spatiotemporal patterns

• Drought management framework based on tropical sea surface temperature disturbances and atmospheric teleconnections
Droughts and oscillations

• Midlatitude droughts are affected by atmosphere-ocean oscillations
 • by the tropical disturbances, which are linked to sea-surface temperature patterns in the Pacific and Atlantic Oceans.

• The combined effects of these two ocean basins manifest themselves in the variation of streamflows, from land surface filtering.
 • Droughts can be considered to be the manifested accumulative effects of atmosphere-ocean oscillations on the terrestrial storage

• In this study, we use a framework to explore the effects of global sea surface temperature variations along with atmospheric teleconnection patterns, on local hydroclimatic conditions related to droughts
 • The Seine catchment, a main waterway in northern France, is used for illustration.
Data ERA maps for the Seine catchment

- Reanalysis
 - Streamflow
 - Drought indices

- Spatial drought variations
 - Local land surface mechanisms
 - Microclimates or geological processes.
Atmosphere-Ocean Oscillation and drought indices

- Using the Standardized Runoff-discharge Index (SRI) to quantify hydrological drought conditions over the Seine.
Atmosphere-Ocean Oscillation and drought indices

- The Seine downstream: the El Nino Southern Oscillation (ENSO) is a significant forcing variable.
- Over almost the whole Seine River basin: the Atlantic Multidecadal Oscillation (AMO) and the West Mediterranean Sea (WMED) indices was significant.
Spatial Downscaling

• In general, during the negative phase of AMO and the positive phase of ENSO, the sea surface temperature of the North Atlantic Ocean is low.

• Droughts are likely to occur at the Seine during the negative phase of AMO, because the cold North Atlantic Ocean has less evaporation and provides less moisture to France.

• Based on these results, a statistical downscaling model is developed to relate SRI to atmospheric and oceanic oscillation indices, which are derived from the Institut Pierre Simon Laplace climate model (IPSL-CM5) outputs.
Downscaling Performance

- Bias correction
Future drought projections

• Using this statistical downscaling model and scenarios of Representative Concentration Pathways (RCP4.5 and RCP8.5), the drought conditions of the Seine are projected for the mid- and long-term future (2050s and 2080s).

• Drought can increase and decrease depends on scenarios
Wrapping up

• A downscaling framework has been demonstrated in this presentation, for analysing and projecting spatial drought conditions

• In the Seine, the Atlantic Multidecadal Oscillation (AMO), ENSO and the West Mediterranean Sea (WMED) can modulate drought conditions in the basin.

• Using these relationships between oscillations and droughts, water management measures can be designed based on tropical sea surface temperature disturbances and atmospheric teleconnections from the predictions of the climate models