High accuracy measurement system for dew and fog water quantification in temperate grassland ecosystems

Andreas Riedl, Yafei Li, Nina Buchmann, Werner Eugster
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland

corresponding author: Andreas Riedl, andreas.riedl@usys.ethz.ch

- **Accuracy** of the proposed micro-lysi-meter system was in the range of ± 0.25 g

- **Different types of non-rain water input** could be distinguished with additional sensors

- **Canopy temperature** of micro-lysi-meters was not altered in comparison to open field

- **Natural plant development** was achieved inside of micro-lysi-meters
Motivation

- **Hypothesis**: Under summer drought conditions **non rain water inputs** (dew, fog, water vapor adsorption) are an important water source that can alleviate water stress in grasslands.
- Our goal was to **develop an automated micro-lysi-meter system** that allows to measure non-rain water inputs with high accuracy.

![Diagram of plant pot with soil monolith, soil temperature and moisture sensor, and 20 kg capacity load cell.](image)

Additional sensors:
- Leaf wetness
- Visibility (fog < 1000 m)
- Plus meteo station
Accuracy: Relative and absolute weight changes

- Relative accuracy was in the range of ± 0.25 g, by increasing weight in steps of 100 g (corresponds to 2 mm depth of water)

- Absolute accuracy was in the range of ± 2 g
Distinction between different types of non-rain water inputs

- water gain
- leaf wetness increase
- visibility < 1000 m

- water gain
- leaf wetness increase
- visibility > 1000 m

- water gain
- no leaf wetness increase
- visibility > 1000 m
Canopy temperature of micro-lysi-meters vs. open field

Canopy temperature was not altered by micro-lysi-meters

Plant height did not differ inside vs. outside micro-lysimeters

Individual plant height of micro-lysi-meters vs. open field
Conclusion

- We were able to determine changes of weight of 20 kg pots with an accuracy of ± 0.25 g (equivalent to 0.005 mm). This high accuracy was stable over a long term period (> 1 year and ongoing).

- Additional sensors and a meteo station allowed to distinguish between different types of non-rain water input. However, those sensors alone were not able to disentangle the share of fog water input during a dew and fog event.

- Canopy temperature was not altered in micro-lysi-meters.

- Plant pots with a size of 25 x 25 cm allowed natural plant growth over long term. Plant height provides a condensation surface for dew formation.