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Mid-latitude Asia can be divided into two distinct climatic regions: arid central Asia (ACA) (“westerlies Asia”),
climatically controlled by the westerlies, and humid eastern and southern Asia ( “monsoonal Asia”), controlled by the
monsoon circulation (Fig. 1a; Huang et al., 2015; Chen et al., 2019). ACA is the main body of the mid-latitude inland arid
region in the Northern Hemisphere and is composed of NW China and Central Asia (Chen et al., 2019). Further, Huang et
al. (2015) defined the core area of the “westerlies-dominated climatic regime (WDCR)” (35° -53° N, 60° -90° E)
during the instrumental period, and it ranges from the Xinjiang in the east to the Caspian Sea in the west. At present, water
availability is crucial for sustainable development in ACA, where the location and intensity of westerlies mainly influence
the precipitation. The arid environment, sparse vegetation and fragile ecosystems make it highly sensitive to climate
change. Understanding its Holocene climate evolution is important for predicting the human living environment changes
In the future. Holocene variations in precipitation in central and eastern ACA have been widely investigated, but the
pattern in western ACA remains unclear.

Objectives:

(1) Based on loess sediments from NE Iran, western ACA, achieved a reliable proxy to reveal the paleoprecipitation
variations; (2) quantitatively reconstruct Holocene paleoprecipitation changes in the western ACA to improve our
understanding of its internal spatial pattern and possible physical mechanisms of the entire ACA.
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Fig. 2. (A) Modern MAP gradient from north to south
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» Sampling: 44 modern surface soil samples were collected, and total 182 bulk samples at 2-cm interval were
collected from five sections for environmental proxy measurements (Fig.1b, 2, 3).

> Dating: Ten luminescence and five AMSC dating samples were collected from the YE profile for dating.

(a) (b) (c) (d) (e)
= 81113 &
% (X10°m/kg) % (X10°m*/kg) %a(¥10°m’/kg) OSL ages X (X10°m/kg) %, ($10*m*/kg)
0 05 1 CG 0 1 2 (ka) 0 02 46 8

_ e e e m e e e e e e e e e e e el e e —_ o =

0.14+0.05

2.00+0.40

[T

3.60+0.40

7.99+9.66- — S

) 11.40:1.00

) -20 -24 -28

= 8°°C,_ (%o, V-PDB) 116 -20 24 28 10.500.70 18 22 -26

[<*]

- -18 -22 -26 8"C,,_ (%, V-PDB) 6"°C, , (%o, V-PDB)

80 - 12.80+0.80

3C,, (%, V-PDB)
11.80+1.00

100 11.80+0.80

Bl Paleosol [— Weak paleosol [ | Loess m OSL sample locations

120 12.70+0.90
_ -18 =22 =26
3%C, , (%o, V-PDB)

Fig. 3. Photographs, stratigraphy, chronology, 6*°C, and y; records of five loess profiles from NE Iran. Blue dashed lines show paleosol
boundaries.

2015; Chen et al., 2019), and was flanked by Kopet Dag Mountains to the
north and Alborz Mountains to the south, Caspian Sea was in the west
0 (Fig.1b). Loess is widely distributed on the so-called Iranian Loess Plateau
Tow o e/ SR (ILP) (Fig.1b), and is located between the rivers Atrek and Gorgan (Fig.

v'At present, the majority of the precipitation in this area falls during
winter and spring with approximately more than ~85% in a year (Wang et
al., 2016, 2019), which has the characters of Mediterranean-type climate:
/ Lacustrine sediments === Boundary of modern summer monsoon "5 | 10 2,(,(,(,km| with hot, dry summers and mild, humid winters (Wang et al., 2019); totally
< different from monsoonal Asia which was influenced by Eastern Asian

Summer Monsoon (EASM) and Indian Summer Monsoon (ISM)
circulations with major precipitation in summer. The high-level westerlies
can carry moisture from North Atlantic Ocean, Mediterranean, Black Sea
and Caspian Sea to northeastern Iran. Because the pressure differences
between the Caspian Sea and Central Iranian highlands, during summer,
northeasterly to northwesterly winds are the dominated near-surface winds,

2016, 2019). Currently, mean annual temperature (MAT) only has the
slight changes from ~15 °C in the south to ~18 °C in the north. Mean
annual precipitation (MAP) shows significant gradient with latitude of
more than ~800 mm in the south near Alborz Mountains and less than
~300 mm in the north of ILP near Kopet Dag Mountains over ~80 km
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> Relationship between the 6+°C,, values of surface soils and MAP in northeastern Iran
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Fig. 4. Relationship between 6'°C,, values of 44 surface
: : : soil samples and MAP. Black and green dots indicate
where y is the surf il 6% value and x is MAP.
ere y Is the surface soil 6 Corgg alue and x Is samples sampled along two transects (from northwest to
southeast and from northeast to southwest).
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Fig. 7. Photograph, stratigraphy and chronology of six loess-paleosol sequences from mid-latitude Asia. YE (a, from NE Iran, this study; the red
dashed line represents the reconstructed MAP with uncertainties), VA (b, from Kazakhstan) and LJIW10 (c, from northern Xinjiang) are from
ACA; LT (d), XY (e) and YX (f) are from the Chinese Loess Plateau in monsoonal Asia. Blue dashed lines denote the boundary of Holocene
paleosol layers.

> Loess 6°C,,, values can be used as a useful proxy to reveal the paleoprecipitation variations in NE Iran. The resulting
transfer function is valid for paleoclimatic reconstruction in western ACA where the hydroclimate climate is dominated

by the westerlies and the natural ecosystem is dominated by C; plants.

» Our quantitatively reconstructed Holocene MAP results show the nearly constant MAP (~93 mm) before ~7.4 Ka,
followed by a persistent wetting trend, with the wettest period occurring in the late Holocene (4.0-0.0 ka, ~390 mm).
Stratigraphic features, environmental proxies (6*3C,,, magnetic susceptibility and color) support this quantitative MAP
reconstruction. Four additional short loess profiles show similar stratigraphic features and trends of environmental
proxies. A dry early Holocene and a persistent wetting trend since the mid-Holocene in NE Iran are consistent with
sand dunes and lake sediment records from western ACA. Comparison of these results with loess records from central
and eastern ACA and monsoonal Asia supports the concept of a WDCR which was proposed based mainly on lake
sediment records.

» The possible forcing mechanisms of the persistent wetting trend during the Holocene in the western ACA, on the sub-
orbital timescale, can be attributed to changes in solar insolation.
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