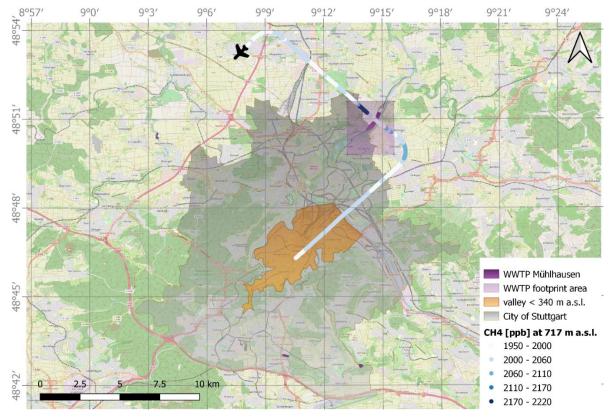


Quantifying urban methane emissions in the city of Stuttgart, Germany

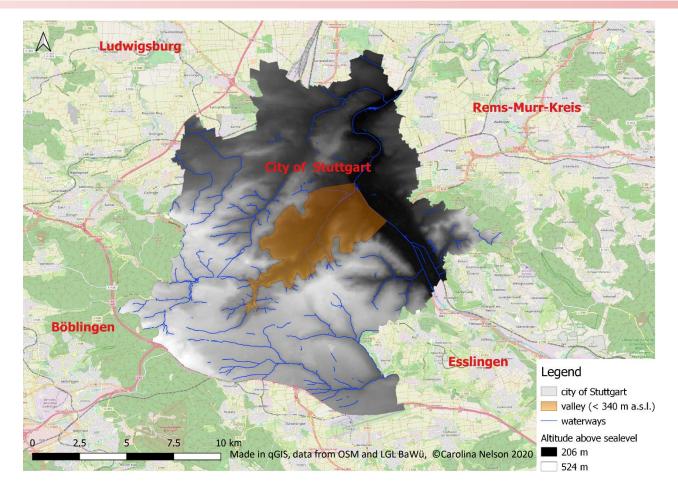


What is the research idea?

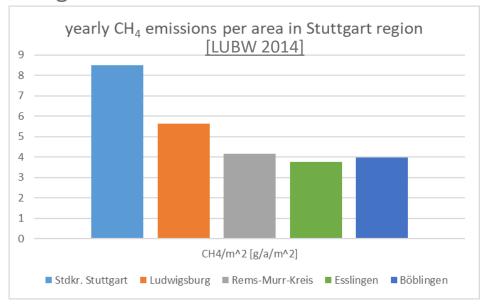
DLR flight above Stuttgart on 9th of July 2018 at 717 m. a.s.l.

Guiding questions:

- What are potential CH₄ sources in Stuttgart?
- How can these source be identified and quantified by top-down approaches?
- Are the emissions comparable to bottom-up approaches?

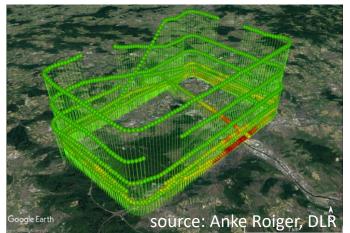

Measurement car equipped with an OF-CEAS and an CRDS spectrometer at the waste water treatment plant in Mühlhausen

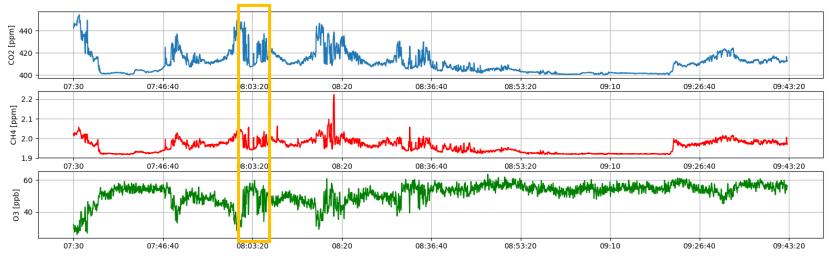
 \Rightarrow Method: complement airborne data of the DLR flight campaign by ground based mobile in-situ measurements of CH₄, CO₂ and δ^{13} CH₄ isotopes in Stuttgart

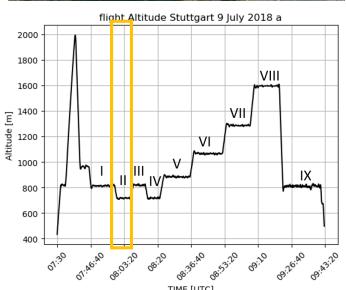


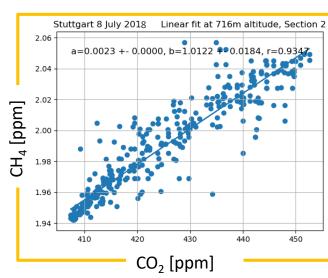
Why looking at Stuttgart?

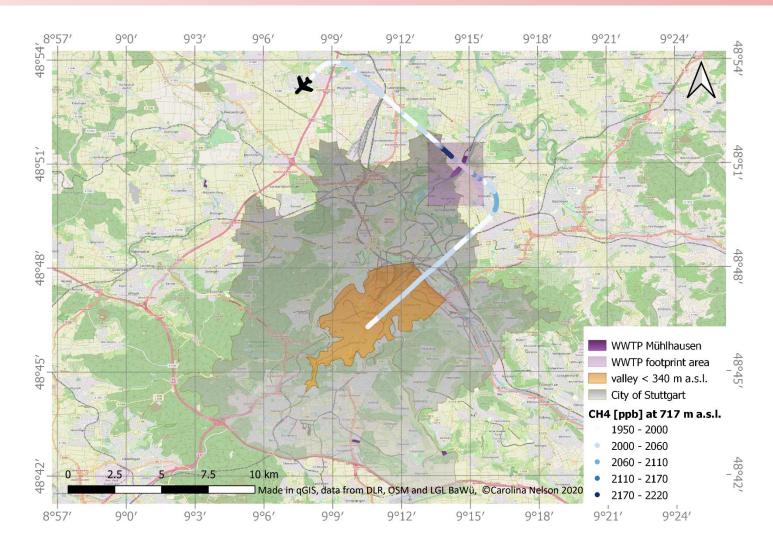
- Major City and economical centre in state of Baden-Württemberg, South of Germany
- Ca. 612.000 Inhabitants
- City centre located in a valley < 340 m a.s.l. along the river Neckar

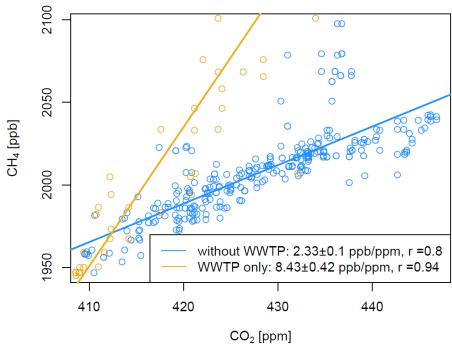

 \Rightarrow Emission estimate for City of Stuttgart 1763 t CH₄ /year with uncertainties > 300 % !!!



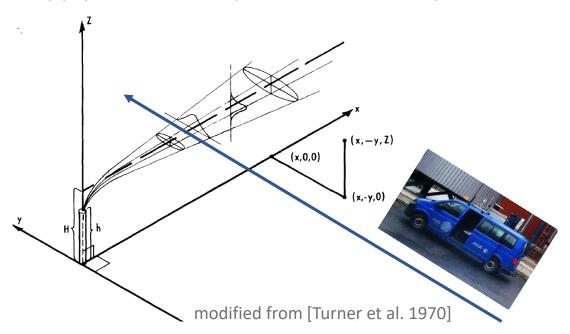



DLR flight campaign in July 2018




- DLR flight campaign Comet 1.0 measuring of CH₄, CO₂, O₃, NO₂ above Stuttgart
- Calculate CH₄/CO₂ ratio at each altitude
- ⇒ Ratio of ca. 2.3 ppb/ppm fits surprisingly well to bottom-up inventory of LUBW

How to detect local sources from GHG ratios?


- CH₄/CO₂ ratio in footprint area above Waste water treatment plant (WWTP)
 Mülhausen almost 4 times steeper
- ⇒ Outliers to linear relation at 717 m a.s.l. indicate locale methane source

Ground-based mobile in-situ measurements

- Mobile set-up in car with two roof top air inlets for CRDS (Picarro) and OF-CEAS (Licor) spectrometers, roof top weather station GILL, GPS, GoPro, mobile atmospheric sample bags and AirCore
- Drive several times orthogonal through Plume
- Apply Gaussian dispersion model for point sources

Field campaigns

Stuttgart 1 (S1): identifying Waste Water treatment plant (WWTP) Mühlhausen as target area

Stuttgart 2 (S2): samples at gas works for comparison, Inversion measurements, transects at WWTP Mühlhausen for Gaussian analysis, isotopy measured with AirCore

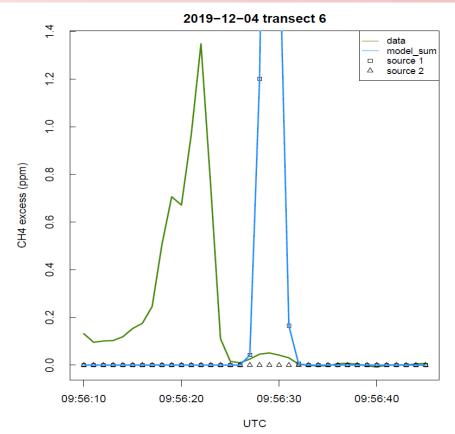
• Stuttgart 3 (S3): Locating sources at WWTP Mühlhausen, capturing of atmospheric sample bags

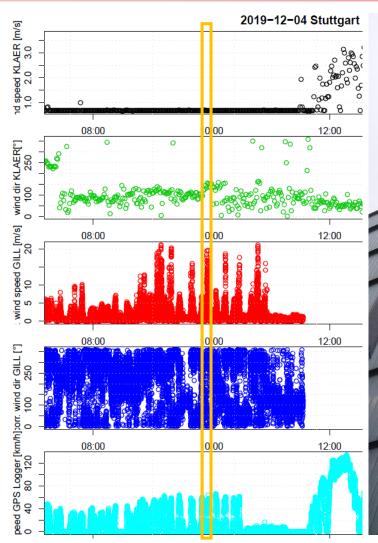


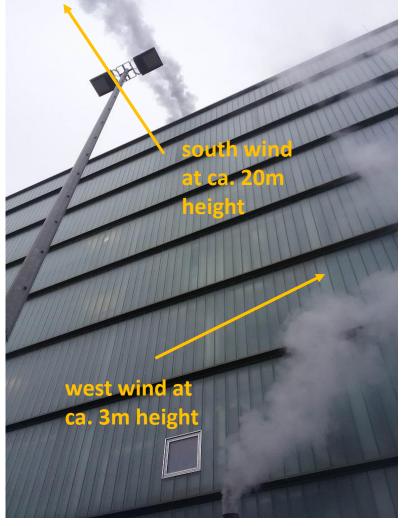
Transects at WWTP Mühlhausen 04.12.2019

- wind speed < 1m/s from NE
- Background around 2.6 ppm
- Driving speed around 70 km/h
- Measured excess from 0.6 − 2 ppm
- Gauss Modell on 7 out of 11 transects
- Collect 5 Peaks in AirCore

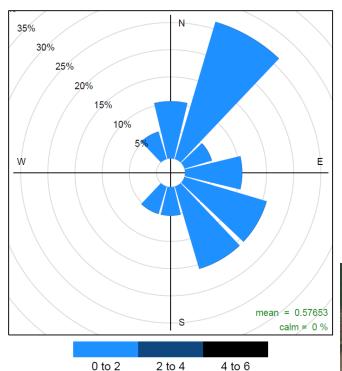
⇒ modelling peak by peak for one point source around sludge thickener



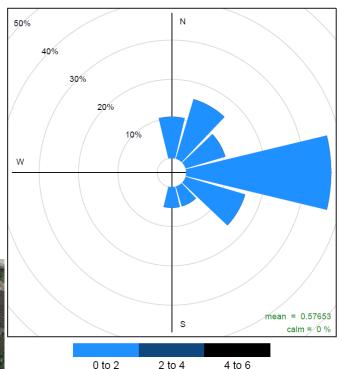



Challenges of Gaussian analysis

- **⊗** Problem of low wind speed
- **Output** Unreliable mobile wind measurements
- **B** Problem of local wind fields



Adjusting the wind direction



(m s⁻¹)
Frequency of counts by wind direction (%)

- Assume position of one source sewer gas storage tower be correct
- Adjust measured wind direction according to observation for each peak

 $$\rm (m\,s^{-1})$$ Frequency of counts by wind direction (%)

Gaussian dispersion theory

$$c(x, y, z; H) = \frac{Q}{2\pi \sigma_y \sigma_z u} \exp\left(-\frac{1}{2} \left(\frac{y}{\sigma_y}\right)^2\right) \cdot \left[\exp\left(-\frac{1}{2} \left(\frac{z - H}{\sigma_z}\right)^2\right) + \exp\left(-\frac{1}{2} \left(\frac{z + H}{\sigma_z}\right)^2\right)\right]$$

- c: concentration at distinct location [g/m³]
- Q: emission rate [g/s]
- u: effective wind speed [m/s]
- H: effective emission height
- σ_z , σ_y : standard deviation of Gaussian plume
- ⇒ Dispersion depend on downwind distance, wind speed, surface roughness, height above surface and turbulent structure of the atmosphere (stability class)

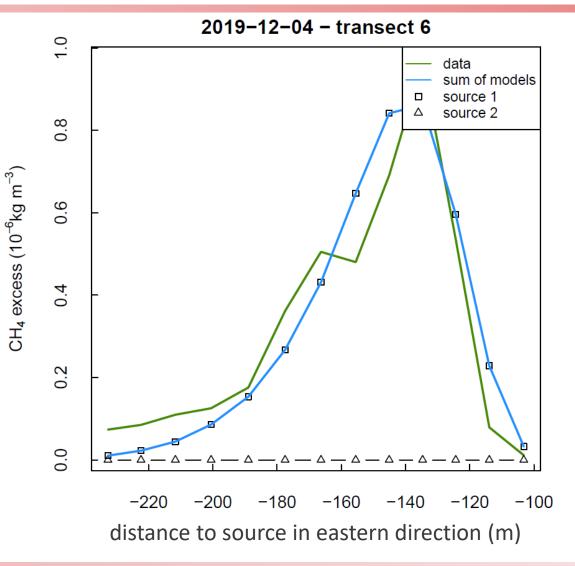
Table 3-1 KEY TO STABILITY CATEGORIES

Surface Wind Speed (at 10 m), m sec ⁻¹			Day		Night	
		Incoming Solar Radiation			Thinly Overcast	<i>≤</i> 3/8
		Strong	Moderate	Slight	or ≥4/8 Low Cloud	•
<	2	Α	A-B	В		
	2-3	A-B	В	C	E	F
	3-5	В	B-C	C	D	E
	5-6	C	C-D	D	D	D
>	6	С	D	D	D	D

The neutral class, D, should be assumed for overcast conditions during day or night.

[Turner et al. 1970]

Emission estimate via Gaussian plume model

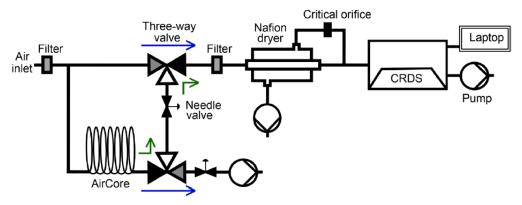

$$Q_{exp} = \frac{I_{exp}}{I_{GM}} \cdot Q_{GM}$$

$$I_{exp} = \sum_{t=t_0}^{t_{fin}} CH_4^{exp}(t) \cdot s(t)$$

$$I_{GM} = \sum_{t=t_0}^{t_{fin}} \cdot CH_4^{GM}(t) \cdot s(t)$$

- Q = source emission
- I = Integral of measured (CH_4^{exp}) and modelled concentration (CH_4^{GM})
- Model input emission strength $Q_{GM} = 20.000 \text{ g/h}$ cancels out with I_{GM}
- Output emission Q_{exp} varies from 151 5435 g/h

 \Rightarrow mean emission estimate 1890 ± 1740 g/h (± 92%)



Source attribution of emission by ¹³C- isotopy

- Sewer gas sample from WWT Mühlhausen
- Natural gas sample bags from EnBW
- Atmospheric sample bags
- AirCore analysis of single peaks by Picarro
- \Rightarrow What is the δ¹³CH₄ footprint of the measured methane emissions?

Scheme of mobile setup with Picarro analyser [Hoheisel 2017]

Isotopic analysis of in-situ measurements

$\delta^{13}CH_4$ at	Stuttgart 2 0304.12.2019	Stuttgart 3 25.02.2020
Gas works	- 40.2 +/- 1.2‰ (2xsample bag) - 39.4 +/- 6.8‰ (2xAirCores)	- 40.1 +/- 1.1‰ (2xsample bag)
WWTP sludge thickener	- 51.8 +/- 11.0‰ (5xAirCores)	- 52.2 +/- 1.5 ‰ (2xsample bag) - 52.7 +/- 2.2 ‰ (3xAirCore)
WWTP exhaust air		- 46.2 +/- 2,2‰ (3xAirCore)
Back ground		- 47.9 +/- 3.5 ‰ (1xSample bag)

- Isotopic signature of natural gas samples of ca. –40‰ in good agree with expectations
- Stronger $\delta^{13}CH_4$ depletion ca. –52% WWTP samples indicates biogenic origin
- Distinguishing two different sources at WWTP Mühlhausen
- \Rightarrow Isotopic analysis attributes measured CH_4 peaks to waste water treatment sector

Emission estimation summary

Achievements

- Identified WWT Mühlhausen as relevant urban methane source in Stuttgart during 3 field campaigns
- Successfully applied Gaussian dispersion model to 7 mobile measured concentration peaks
- Derived preliminary emission estimate of ca. 2000 g/h ± 110%
- Localised two sources on WWT area and analysed by $\delta^{13}\text{CH}_{\text{A}}$ isotopic composition
- Differentiated between natural gas (ca. 40 ‰) and biogenic origin (ca. -52 ‰) by sample bag and AirCore analysis
- Attributed measured emissions to WWT Mühlhausen
- Justified modelling of wind direction according to observation

Challenges

- Accessibility of sources in urban area
- Wind conditions during campaigns p.ex.
 Low wind speeds, unstable wind direction, variable local wind fields...
- Wide span of model output
- Numerous factors of uncertainty p.ex. stability class of atmosphere, influence of buildings on dispersion...

Next steps:

- Improve model results by including second source
- Calculate bottom-up estimates for WWTP Mühlhausen and compare to model results
- Further isotopy analysis in comparison to data from Heidelberg
- ⇒ Derieve robust emission estimate for WWTP Mühlhausen

Open questions:

- How to improve model for urban areas?
- How to lower dependency on favourable wind?
- Boundary-layer box model with inversion data?
- Transferability to other target sites?

University of Heidelberg.de
Institute of Environmental Physics
Quantifying urban methane emissions
in the city of Stuttgart, Germany

iterature

- IPCC 5th assessment report [IPCC AR5]
- Large Fugitive Methane Emissions From Urban Centers Along the U.S. East Coast [Plant et al. 2019]
- Luftschadstoff-Emissionskataster Baden-Württemberg 2014 [LUBW 2014]
- Estimation of greenhouse gas emission factors based on observed covariance of CO₂, CH₄, N2O and CO mole fractions [Haszpra et al. 2019]
- Workbook of atmospheric dispersion estimates [Turner 1970]
- LiCor 7810 Instruction Manual [Licor instruction manual]
- Characterization of a CRDS Analyzer and Determination of Isotopic Signatures of Anthropogenic CH₄ sources using mobile measurements, MA thesis [Hoheisel 2017]
- Emissionen erneuerbarer Energieträger [UBA 2018]

Links:

- https://prtr.eea.europa.eu/#/pollutantreleases [E-PRTR]
- https://data.europa.eu/doi/10.2904/JRC DATASET EDGAR [EDGAR]
- https://www.picarro.com/company/technology/crds [Picarro]
- https://elib.dlr.de/115312/ [DLR comet 1.0]
- https://www.stuttgart-stadtentwaesserung.de/fileadmin/user_upload/PDFs/2017/Hauptklaerwerk_Muehlhausen.pdf [WWTP Mühlhausen]

Carolina Nelson - EGU 2020 Session AS 3.14

http://hitran.iao.ru/bands [HITRAN database]

