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Earth’s mantle rheology... ‘@ O, \

Experimentalists say [e.s. Karato and Wu, 1993]: strain-rate (é) depends on temperature (T), pressure (F), grain-size
(d), stress (o), water fugacity (f,0) and melt fraction (¢):

E + PV E = activation energy ; V = activation volume ; R = gas constant
& = Ad_m O'nexp S —— n and m are the stress and the grain-size exponents.
RT A'is here a pre-factor, also containing the dependence of € on fy, o and ¢.

Composite rheology:
Diffusion creep:  Linear stress dependence (n = 1) non-linear grain size dependence (m = 2-3).
Dislocation creep: Non-linear stress dependence (n=3.5)  no grain-size dependence (m = 0).

Most numerical models of mantle convection assume diffusion creep only, neglect grain-size and use low
activation energy for diffusion creep to mimic a composite rheology.

* Observations: Earth’s upper mantle would at least partly deform by dislocation creep (e.g., as revealed by
olivine lattice-preferred orientation in the uppermost mantle [e.g. Karato, 1992], generating seismic anisotropy).

* Numerical studies: composite rheology affects the planform of convection in the stagnant-lid regime
[e.g. Schulz et al., 2019]

QUESTION: How does composite rheology affect mantle flow, the generation
and style of plate-like behavior and its surface expressions?
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Numerical models

Numerical setup [based on Arnould et al., 2018]: Constitutive laws (dependenceon T, P, d and o):
- StagYY code [Tackley et al., 2008] . do m Edif + PVdif

- Cartesian geometry (4x1, 512x128 cells) €aif = Aaif (7) €Xp (_ RT ) g

- Boussinesq approximation _ _

- Rayleigh number of 5.10° - 5.10’ Egist = Agist 0™ €Xp (_ Eaist ;‘TPlesl>

- Mixed mantle heated from within (~80 %) and core (~20%)
- 6-8 orders of magnitude of viscosity variation
- Pseudo-plastic rheology (yield stress) o 1

- Egif =127 kJ/mol and Vair =14 cm3/mol _ (dg\7—T (Edisl — Edif) + P (Vaisi—Vair n—1
- Constant grainsize o(T,P,d) = (F) exp BT

Check next slide to see how model a; varies with E g1, Viis;, P and T!

Transition stress o;:

Two diffusion-creep only reference models:
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Effect of varying the activation energy and volume — stagnant-lid models (co 0
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The white contours delineate portions of the mantle deforming in pure (100%) dislocation creep.



Number of subduction zones

Effect of varying the activation energy and volume — mobile-lid models

—> Same trend for the proportion of dislocation creep with increasing E;;5; and V;4; as in stagnant-lid models

= Plumes are more likely deforming in dislocation creep while slabs are dominantly deforming in the
diffusion-creep regime. Dislocation creep likely occurs around slabs.

—> The shape of slabs depends on the proportion of dislocation creep:
* large proportion of dislocation-creep => slabs break often.
* intermediate proportion of dislocation-creep => slabs are weak and highly buckled
* small proportion of dislocation-creep => slabs are stiffer and less buckled.
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Effect of varying the Rayleigh number — stagnant-lid models

Edisl =275 kJ/moI
Vdisl =83 cm3/mol
Constant grain-size

= Increasing the reference Rayleigh number Ra while
keeping Eg;51, Vaisp and d constant results in increased
stresses within the convective system.

Ra 5e5

= As a result, larger portions of the mantle exceed the
transition stress and deform in dislocation creep.

= Upper mantle viscosity is lower and lithosphere is thinner
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Conclusions:

Stagnant-lid models:
increasing E;5; and V;5; or Ra results in an increased proportion of dislocation creep in the upper mantle, which
generates lower viscosities, thinner lithospheric lids and larger mantle velocities than models in pure diffusion

creep only.

Models with plate-like behavior:
at a given yield-stress, different tectonic behaviors can arise depending on the amount of dislocation creep in the
mantle through the modulation of the asthenospheric and upper-mantle viscosity.

Perspectives:

- What is the role of grain-size and its spatiotemporal evolution on mantle and plate-like behaviour?

- Under which conditions are model predictions of dislocation creep distribution comparable to predictions
seismic anisotropy distribution in Earth’s upper mantle?

- Moving to 2D spherical annulus and/or to 3D geometry?

- What are the implications of a composite rheology on the surface dynamics of other planetary bodies with
different surface conditions (e.g. Venus, icy bodies)?



