An 8-year cycle in the rate of the global mean sea level

EGU2020: Sharing Geoscience Online
EGU G3.2 Session, 6th May 2020
International Space Science Institute (ISSI), Bern, Switzerland
Global mean sea level (GMSL) over the altimetry era (1993-2020)

- GMSL is rising and accelerating
- GMSL rose by about 9 cm since 1993

Research question:
- How the rate of the GMSL evolved with time over the altimetry era?
Sea level budget

• GMSL budget equation:

\[\text{GMSL}(t) = \text{GMSL}_{\text{steric}}(t) + \text{GMSL}_{\text{ocean mass}}(t) \]

 • \(\text{GMSL}\)_{\text{steric}} refers to the contribution from the ocean thermal expansion
 • \(\text{GMSL}\)_{\text{ocean mass}} refers to the change in mass of the oceans

• Ocean mass term (water mass conservation in the climate system):

\[M_{\text{ocean}}(t) + M_{\text{glaciers}}(t) + M_{\text{GIS}}(t) + M_{\text{AIS}}(t) + M_{\text{TWS}}(t) + M_{\text{AWV}}(t) = 0 \]

Representing temporal changes in the mass of glaciers, Greenland and Antarctica ice sheets (GIS, AIS), terrestrial water storage (TWS) and atmospheric water vapour (AWV).
GMSL budget components

- Land ice components exhibit slight interannual variability
- Thermal expansion and TWS components show significant interannual variability

Objective:
- Estimation of the temporal evolution of the GMSL rate after removing the interannual variability of all components of the GMSL budget.

(Source: ESA CCI Global Mean Sea Level Budget project, 2020)
Interannual variability of GMSL

Method to separate between contributions:

- Isolate the interannual (natural) variability of each component of the GMSL budget
- Remove it from the GMSL before computing the time evolution of the rate
How to extract the interannual signal of the GMSL budget components?

The procedure is:

- To detrend the time series:
 - Quadratically for the steric and land ice components
 - Linearly for the TWS and AWV
- To remove the detrended time series (interannual variability/IV) from the initial GMSL time series:

\[
G_{\text{MSL}_{LT}} = \text{GMSL} - \text{IV}_{\text{steric}} - \text{IV}_{\text{TWS}} - \text{IV}_{\text{glaciers}} - \text{IV}_{\text{AIS}} - \text{IV}_{\text{GIS}} - \text{IV}_{\text{AWV}}
\]

\(G_{\text{MSL}_{LT}}\) is supposed to represent the long-term trend plus eventually some remaining interannual variability not included in the herein used observations.
Data

• GMSL from the European Space Agency (ESA) Climate Change Initiative (CCI) (01.1993-12.2015)
• GMSL from the Copernicus Marine Environment Monitoring Service (CMEMS) (01.2016-12.2016)
• GMSL from the Colorado University (01.1993-12.2016)
• Land ice (Antarctica and Greenland ice sheets and glaciers) data from the “Sea Level Budget Closure” ESA project (2020)
• Glaciers data from Zemp et al. (2019)
• TWS data from the WaterGap Hydrological Model (WGHM) from Goethe University Frankfurt
• TWS data from the Interaction Soil Biosphere Atmosphere-Total Runoff Integrating Pathways (ISBA-CTRP) from MetéoFrance (Toulouse)
• Ocean thermal expansion (steric component) from Dieng et al. (2017)
• Atmospheric Water Vapour (AWV) from ERA5 Atmospheric reanalysis
• GRACE data from Blazquez et al. (2019)
GMSL, GMSL$_{LT}$ and interannual variability signal of all components of the GMSL budget
Rate of GMSL_{LT} over 5-year windows shifted 1-year

- GMSL_{LT} shows a clear 8-year cycle superimposed on an increasing trend

Research question:
- What is the origin of the 8-year cycle?
What is the origin of the 8-year cycle?

• This 8-year periodicity is present in the GMSL$_{LT}$ time series in spite of the removal of the interannual variability of the GMSL budget components.

• Two possible reasons:
 • A missing component not considered in the GMSL budget
 • Inadequate data for representing the GMSL budget components

• Approach:
 • Option 1: Indonesian Sea Region not covered by Argo, but it does not show an 8-year periodicity
 • Option 2: Try to find GMSL budget component that has an 8-year cycle
Peridograms of the GMSL budget components

- Only land ice components show a peak around 8 years.
- Glacier Zemp data peak at 8 years is 10% of the amplitude of the GMSL$_{LT}$ peak.
- Land ice component time series’ are generally very smoothed and display small interannual variability.

Hypothesis:
- The glacier component could be responsible for the 8-year cycle.

Research question:
- Could a missed glacier contribution be responsible for the observed 8-year cycle?
Method to investigate if glaciers could contribute to the 8-year cycle

GRACE data averaged over all land (excluding the ice sheets) provides the change in water mass due to the combined effect of glaciers and TWS:

\[
\text{GRACE}_{\text{land}} = \text{Glaciers} + \text{TWS}
\]

GRACE-based glaciers = \(\text{GRACE}_{\text{land}} - \text{TWS}\)
GRACE-based glacier interannual variability

- The GRACE-based glacier time series shows an 8-year cycle.
- Its amplitude (1mm) is the same as the one observed at GMSL\(_{LT}\) and 10 times larger than the one observed in the Zemp et al. (2019) data.
- Glacier component is a strong candidate to explain the 8-year cycle reported by GMSL\(_{LT}\).
- However, error contributions in the TWS component coming from the hydrological models can also have an impact.
Sea level rate over 5-year windows shifted 1-year based on GMSL$_{LT}$ minus the 8-year cycle

- Rate of GMSL$_{LT}$:

 \[GMSL_{LT} = GMSL - I_{v,\text{steric}} - I_{v,TWS} - I_{v,\text{glaciers}} - I_{V_{\text{AIS}}} - I_{V_{\text{GIS}}} - I_{V_{\text{AWV}}} - (8\text{-year cycle}) \]

- GMSL rate increases by a factor of 2 from 1995 to 2015
Acceleration of GMSL

- Acceleration of GMSL$_{LT}$:
 \[A_{GMSL\ (1993-2016)} = (0.11 \pm 0.02) \text{ mm/yr}^2 \]

- Comparison with other published values:
 - Nerem et al. (2018):
 \[A_{GMSL\ (1993-2017)} = (0.085 \pm 0.025) \text{ mm/yr}^2 \]
 - Veng and Andersen (2019):
 \[A_{GMSL\ (1993-2017)} = (0.093 \pm 0.014) \text{ mm/yr}^2 \]

- The GMSL$_{LT}$ acceleration is slightly larger than other estimations reported but it is still within the error bars
Acceleration of GMSL budget components

- Acceleration of GMSL$_{LT}$:
 \[A_{\text{GMSL}} = (0.11 \pm 0.02) \text{ mm/yr}^2 \]

- Acceleration of GMSL budget components:
 - \[A_{\text{glaciers}} = (0.027 \pm 0.001) \text{ mm/yr}^2 \]
 - \[A_{\text{GIS}} = (0.055 \pm 0.001) \text{ mm/yr}^2 \]
 - \[A_{\text{AIS}} = (0.026 \pm 0.001) \text{ mm/yr}^2 \]
 - \[A_{\text{steric}} = (0.028 \pm 0.004) \text{ mm/yr}^2 \]
 - \[A_{\text{AWV}} = (-0.004 \pm 0.001) \text{ mm/yr}^2 \]

- Sum of all components:
 - \[A_{\text{Total}} = (0.13 \pm 0.01) \text{ mm/yr}^2 \]
Conclusions and outlook

• Discovery of an unexpected 8-year cycle present in the GMSL record corrected for the interannual variability of all the components of the sea level budget
• Attribution of the 8-year signal to the interannual variability of the glacier component
• Good agreement with acceleration results reported in other publications
• Further research is needed to understand the processes causing the reported 8-year cycle
Thank you for your attention!
Satellite altimetry

- Radar altimeters on board the satellites transmit signals at high frequencies to Earth and receive the echoes from the Surface.
- The ultimate goal is to measure surface height relative to a terrestrial reference frame.
- Sea Level Anomalies = (Satellite Altitude) – (Mean Sea Level)

- The altitude of the satellite is the satellite’s distance with respect to an arbitrary reference (e.g., the reference ellipsoid, a rough approximation of the Earth’s surface).
- The mean sea level is the sea surface height averaged across all the oceans of the globe.

(Credits CNES/D. Ducros)
Periodograms of GMSL_LT rate and GMSL_LT
Quadratically detrended CCI/CMEMS and CU GMSL
Interannual variability of TWS from WGHM and ISBA-CTRIP
Periodograms of climate modes

- NAO
- AMO
- SAM
- MEI
- IOD
- PDO