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Subduction dynamics and upper plate topography

Subduction dynamics generates the
deflection of the overriding plate (OP), that

we can refer to as a dynamically-induced flexural
topography :
¢ Consistently shown in elastic [Davies, 1981; Hassani et
al., 1997], visco-elastic [Hampel & Pfiffner, 2006] and
viscous [Cramert et al., 2017; Chen et al., 2017]

subduction models.
* Wavelength : 100s of kms

Plate kinematics and strength of the plates
influence the dynamically-induced OP flexural topography
[e.g. Hampel & Pfiffner, 2006; Crameri et al., 2017].

Changes in OP velocity (driven by external forces) have
been shown to affect subduction dynamics [Guillaume et al.,
2018; Cerpa et al., 2018]. Its impact on OP surface elevation
has not yet been addressed.
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Fig. 1 : Sketch of flexural topography (Depression and Bulge) that forms at the surface of

the overriding plate due to the dynamics of the system (Modified after Chen et al., [2017]).

In this study we investigate :

topography?

1. How OP velocity and the plates and the subduction interface strengths
control OP topography in models that reach steady-steate ?
2. What is the impact of sudden changes in overriding plate velocity on OP
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Model set-up

* We use cartesian 2-d mechanical models of subduction zones which consists of two solid viscoelastic plates and an
isoviscous Newtonian upper mantle. The two solvers are coupled via a fictitious domain method [Cerpa et al., 2014].

* The two plates have free-surfaces. A planar contact surface defines the subduction interface, with a constant
friction coefficient u.

* We impose the far-field OP velocity v,, (SP-free models), while the subducting plate (SP) is free (initially
pushed by a piston until the self-sustained downgoing SP motion starts). In a few models, the OP is also free (free models).
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Model parameters
E Young modulus 101 Pa
*  We evaluate the effect of :
*  OP viscosity Nop OP viscosity 10*Pa's
e SP viscosity T SP viscosity 10**Pa's
et a.t sulpehiotion Moz os NMm Upper mantle viscosity 10 Pas Values 1in
e OP velocity p
h Plates’ thickness 70 km RIS
models
Ap Plates-mantle density contrast 50 kg/m3
U Interplate friction coefficient 0.01
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Time-evolution of reference models (<9 DO

BY SA

*  We evaluate a free and a SP-free model (with v,,= 4 cm/yr) in the cases u = 0.01 and u = 0.04
* All models exhibit 4 distinct phases including a last quasi-steady state phase where relatively little changes are observed.
* During the quasi-steady state phase :
e Low-u case : the OP in the SP-free model moves slower than in the equivalent free-model thus the OP is in extension
* High-u case : the OP in the SP-free model moves faster than in the equivalent free-model thus the OP is in compression
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Fig. 3 : Kinematic evolution of free models (a, b) and SP-free models (c, d) with reference constant OP velocity (4 cm/yr), for an interplate friction coefficient of 0.01
(top row) and 0.04 (bottom row). The far-field horizontal force calculated at the trailing edge of the overriding plate is displayed for the SP-free models (e, f).
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Overriding plate flexural topography

* The topography in the SP-free model with v, = 4 cm/yr and u = 0.01 is represented below
* Development of a prominent forebulge, a depression and a 2" bulge of very small amplitude
e The estimation of the arc position lies near the surface depression
* During the quasi-steady state, the topography evolves little.
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Effect of kinematics and OP tectonic regime on topography

*  We evaluate the influence of v,, on OP topography (holding all the other rheological parameters fixed)
* OP topography in the SP-free models varies according to the tectonic regime of the OP (Iig. 5):

* In the neutral regime (regime where far-field Fxx is close to zero because the imposed OP motion is close to its “free”
velocity) the OP topography is close to that in the equivalent free-model. The peak-to-peak height between the forearc
bulge crest and the bottom of the depression is the lowest among all the models, i.e. the OP topography is the flattest.

* In the extensive regime (OP moves slower than its “free” motion), the depression grows with |F.,| whereas the
height of the forearc-bulge crest changes little.

* In the compressive regime (OP moves faster than its “free” motion), the forearc bulge grows with |F,|, while the
depression remains stable regardless of Fxx.

* OP topography correlates with the shape of the subduction interface, also controlled by the OP tectonic

regime (Fig. 6)
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Fig. 5 : Time-averaged topographic profiles for SP-free model with t=0.01 and various constant OP velocities. For Fig. 6 : Geometry of the plate interface and average OP
comparison, we have also plotted the profiles obtained in the free models with identical rheological parameters. Right tectonic regime during the quasi-steacly state phase.
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Effect of interplate friction on OP topography
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Concluding

Main take-home messages

OP (flexural) topography.

¢ The OP tectonic regime is modulated by the differential between the OP far-field velocity and
its equivalent free-motion (which depends on internal parameters such as the rheology).
* The OP tectonic regime and the friction at the subduction interface are prime controls on the

* We have further studied the impact of
changes in OP velocity and showed that :

o Tollowing  OP-velocity  changes, a
transient episode of strong vertical
motions (order of 0.1 mm/yr) are
predicted from the trench up to a distance
of 600-800 km from the trench.

o The transient episode is followed by a
slower (rates of motions << 0.1 mm/yr)
steady-state accommodation of topography
to the new boundary condition.

= To learn more about this check our recent paper
[Cerpa & Arcay, G3, 2020]
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Key Points:

« The topography amplitude and
position on top of the overriding
plate are controlled by its
kinematics and the plate and
interface strengths

« Changes in overriding plate
velocity yield transient strong
(rates ~0.1 mm/yr) surface vertical
motions from the trench to the arc
region

« The strength of the subducting plate
has the strongest impact on the
topographic response after a change
in overriding plate kinematics
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Abstract we study the dynamically induced flexural topography in subduction numerical mechanical
models. We focus on the topographic changes at the overriding plate (OP) surface induced by variations in
OP kinematics, particularly when the subducting plate (SP) has a stationary motion after having reached
the rigid base of the upper mantle. Our models consist of two viscoelastic plates with free surfaces and an
isoviscous mantle. Friction is imposed along the planar subduction interface. We first characterize the
main topographic features at a constant OP velocity, using spatial definitions based on geometrical
estimations of the volcanic arc position. The models exhibit the formation of a bulge in the forearc area
followed landwards by a depression and a smaller second bulge, both bracketing the arc region. The
steady-state distance to the trench of these features increases with OP velocity. Their amplitude is affected
by the far-field OP tectonic regime that depends on kinematics, and plates and subduction interface
strength. We next test the effect of sudden changes in OP velocity. An OP acceleration yields a transient
topographic tilt, during which the outer forearc quickly subsides whereas the arc region uplifts, and that is
followed by reverse slower motions. An OP slowdown induces opposite motions. The rates of elevation
change during the tilt are approximately proportional to velocity variations and mainly sensitive to the SP
strength. The rates are higher than 0.1 mm/yr for velocity changes higher than 1 cm/yr. We suggest that
topographic accommodations of OP velocity changes should be considered when quantifying nonisostatic
topography.
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