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1. Motivation

3. Experimental Methods and Results

Across several scales and boundary conditions, clay-rich rocks/shales are Cylindrical samples (Fig.1) were prepared under dry conditions, oriented at of 0° , 45° and 90° to bedding. Samples were subsequently dried at 50° C until a constant weight was reached, corresponding to a residual water content of about 0.4
encountered in different natural settings such as accretionary wedges, wt.%. Mean porosity is 12.30%1.2 %, determined by helium-pycnometry. A Paterson-type deformation apparatus was used to perform unconsolidated-undrained constant strain rate experiments, varying either confining pressure (p. = 50 - 100
sedimentary basins or fault zones. They also play a fundamental role in MPa), temperature (T = 25 - 200° C) or strain rate (¢ = 1*10-3- 5*%106s1). In addition a set of back-saturated (96.1%=1.3 %) samples was deformed at p.= 50 MPa, T = 100° C and ¢ = 5*10“4s-1 to study the influence of water content on the
engineering applications, as they are suitable as cap-rocks for the geological mechanical behaviour. For microstructural analysis by electron microscopy, sections were prepared using the broad ion-beam polishing (BIB-SEM).
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220 2 - : . - slight strengthening at T = 200° C, likely by thermal degradation of
1029 m2 (Philipp et al., 2017). and clay layers, deformed samples show brittle to semibrittle

deformation behaviour over the range of applied loading clay minerals

conditions (Figs. 3-5). At microscale (Fig. 6) it becomes
& Fig. 1: Sample cores prepared evident that damage is accumulated by a mixture of brittle
perpendicular, 45° and parallel to the and plastic processes, leading to the formation of localized
bedding direction. and distributed deformation.
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Strain rate: weak
- apparent weakening at high rate for 90° samples

Degree of saturation: strong
- potentially induced by excess pore pressure in undrained tests
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Samples loaded parallel to bedding are stronger than 45° and 90°

samples. Multiple trans- and intergranular fractures evolved in strong

. _y.'.’,-\ B R i S minerals, leading to grain-refinement in highly deformed shear zones. The
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e R ey 2 clay matrix is highly compacted and deformed in high-stress regions.
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o Rl o 4l SNk At all deformation conditions, compositional heterogeneity as well as pre-
' 7 { existing rock fabric, also shown by porosity caused variations, have a
strong influence on localization. In the investigated p.-T- ¢ range, the
prevailing deformation mechanism are highly influenced by the sample
heterogeneity and anisotropy.
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