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1. INTRODUCTION
● Manual tuning of NWP models is laborious and lacks 

transparency (Mauritsen et al 2012, Hourdin et al. 
2017) → usage of algorithmic methods 

● Little studies done about how to use algorithmic tuning 
methods in the best way

● We study parameter convergence in “convergence 
tests”: unperturbed control model used as reference

● We considered following aspects:
- selecting level of realism
- selecting optimisation target
- maximising computational efficiency
- reproducibility of the results
- trustability of algorithmic tuning
- potential pitfalls

● Highlights of Tuppi et al. 2020 are presented

2. EXPERIMENT SET-UPS 
AND TOOLS
● Closure parameters of the convection scheme
● OpenEPS ensemble prediction workflow manager 

(Ollinaho et al. in prep.)
● Tuning algorithms embedded in OpenEPS: EPPES 

(Järvinen et al. 2012, Laine et al. 2012) and DE 
(Shemyakin and Haario 2018)

● Optimisation targets: RMS error of Z850 ΔZZ and moist 
total energy norm ΔZE

m
 (e.g. Ehrendorfer et al. 1999):

● Fair CRPS (Leutbecher 2018) for measuring the 
convergence
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4. RECIPE FOR SUCCESFUL 
TUNING
➢ Moderate level of realism (initial condition perturbations + 

possibly model stochastic perturbations)
➢ Comprehensive measure used as cost function (ΔZE

m
 in our 

case)
➢ A relatively short forecast range (24 hours in our case)
➢ A relatively small ensemble size (20 in our case)
● Tested with 8 parameters. All parameters converged toward 

the default values (Fig. S7) 

3. RESULTS
● Moderate level of realism, this increases sample diversity 

(Fig. 1, S1)
● Cost function: more comprehensive, the better 
● Computational efficiency: short forecasts of 24h best in this 

example (Fig. 2, S3), increasing ensemble size not 
accelerating convergence (Fig. 3, S4)

● Convergence with 24h forecasts the most reproducible (S5)
● Algorithmic tuning can be trusted but careless tuning leads 

to bad results; take it as expert-guided

Figure 1. 
Convergence with 
different levels of 
realism for parameter 
1 in (a, b) and for 
parameter 2 in (c, d). 
Ensemble size is 50 
members and 
forecast range 48h. 

Figure 2. L2 convergence test shown 
for parameter θ

2
 with different 

forecast ranges and ensemble sizes. 
Convergence measured with fCRPS

1
 

and fCRPS
2
. Perfect convergence is 

zero.

Figure 3. Evolution of 
convergence of θ

2
 with 

different ensemble 
sizes. Forecast range is 
24 hours.

● Convergence tests with different levels of realism:



Supplementary material for the poster

Number of 
parameters

Different initial 
conditions

Stochastic physics 
(SPPT)

Level 0 (L0) 2 No No

Level 1 (L1) 2 Yes No

Level 2 (L2) 2 Yes Yes

Level 3 (L3) 5 Yes Yes
Table 1. Different levels of realism used in the convergence test.

Root mean squared error of 850 hPa geopotential:

Z850 = 850 hPa geopotential at a grid point in the control forecast
Z’

850 =  850 hPa geopotential at a grid point in a perturbed forecast
D = horizontal domain

Moist total energy norm (e.g. Ehrendorfer et al. 1999):

u’ = difference of u wind between the control and perturbed forecast at a grid point
v’ = difference of v wind between the control and perturbed forecast at a grid point
q’ = difference of specific humidity between the control and perturbed forecast at a grid point
p’s =  difference of surface pressure between the control and perturbed forecast at a grid point
cq = scaling constant for the moisture term, (we use cq=1)
L = vaporisation energy of water
cp = specific heat constant of air at constant pressure
Tr = reference temperature, (we use Tr = 280 K)
pr = reference pressure, (we use 1000 hPa)
δppr/δη = difference of pressure between two model levelsδpη = difference of pressure between two model levels
D = horizontal domain
η = vertical domain



Bias part of the fair continuous ranked probability score (see Leutbecher 2018):

Spread part of the fair continuous ranked probability score (see Leutbecher 2018):

M = ensemble size
θ’j,n = perturbed parameter value of ensemble member j and parameter n
θd,n = default value of parameter n
θ’k,n = perturbed parameter value of ensemble member k and parameter n



Figure S1: Comparison of convergence tests at different levels of realism. Panels (a) and (b) show 
the evolution of distribution mean value (μ) and the mean value ±2 standard deviations uncertainty ) and the mean value ±2 standard deviations uncertainty 
(μ) and the mean value ±2 standard deviations uncertainty  ± 2σ) for parameter θ) for parameter θ1, and (c) and (d) show the same as (a) and (b) but for parameter θ2. The 
purple dots show the parameter default values. The x-axes show running number of iterations, i.e., 
how many ensemble forecasts that have been used. Moist total energy norm (∆Em) is used as the 
cost function, and the levels of realism are summarised in Table 1. EPPES is used as the optimiser, 
the ensemble size is 50 members and the forecast range 48 hours. (Figure 1 of Tuppi et al. 2020).

Interpretation. We think that L0 test do not reveal the true performance in fully-realistic model 
tuning, which uses analyses or observations as reference data. In fully-realistic tuning the truth is 
unknown so using L1 is safe enough simple option. Initial condition perturbations make the initial 
condition sample more diverse so we expect those perturbations to enhance parameter convergence 
in fully realistic tuning. Higher levels of realism did not affect the convergence test results much so 
we expect them to have relatively small impact also in fully-realistic tuning.



Figure S2: Convergence tests with different cost functions. Convergence of θ1 on the left and θ2 on 
the right. The x-axes show running number of iterations. Solid black lines show the evolution of 
distribution mean values (μ) and the mean value ±2 standard deviations uncertainty ) and black dash-dotted lines the mean values ±2 standard deviations 
when ∆Em is used as cost function. Cyan dotted lines and shading in the background show the same 
for ∆Z. Default value shows the fixed parameter value used in the control model. Both convergence 
tests are L1 tests with 50 ensemble members and 48 hour forecasts. EPPES is used as optimiser. 
(Figure 2 of Tuppi et al. 2020).

Interpretation. More comprehencive cost function (∆Em) leads to faster and more reliable 
convergence. Single-variable and single-level cost functions such as ∆Z constrain the quite poorly 
so the signal caused by parameter perturbations may be too weak to be detected. As an example, 
perturbing entrainment of shallow convection is almost not at all visible in 850 hPa geopotential 
height in 48 hour forecasts but it is very visible in specific humidity field.



Figure S3: Components of fair CRPS from the final iteration of the convergence tests with various 
forecast ranges and ensemble sizes. In this example, the optimisation algorithm is EPPES and the 
parameter is θ2. The left-hand side of each block repre- sents the average distance of the parameter 
values from the default value (equation 3), and the right-hand side represents the spread of the 
parameter value distribution (equation 4). Low values and blue colours of both sides of the blocks 
indicate good convergence. (Figure 3 of Tuppi et al. 2020).

Interpretation. Low values of both components of fCRPS denote good convergence. Blue colour 
of part 1 means that the parameter mean value is close to the default value, and blue colour of part 2
means that the parameter distribution is very narrow. Perfect convergence would mean zero scores 
as then the parameter distribution would be shrunken to a dot exactly on the default value. 24 hour 
forecast forecast range is the most optimal forecast range for θ2. For the other parameter  θ1 12h, 
24h and 48h ranges are equally optimal whereas longer ranges are clearly suboptimal (not shown). 
The reason why part 1 (the bias part) is more often red than part 2 (the spread part) is explained in 
figure S6 and the interpretation therein.



Figure S4: Evolution of fCRPS of parameter θ2 in convergence tests with L2, ∆Em , EPPES, 24 
hour forecasts and various ensemble sizes. The interpretation of the blocks is the same as in Figure 
S3. The number of iterations indicates how many iterations of the algorithm have been done, or in 
other words how many ensemble forecasts have been run. Components of fCRPS have been 
calculated using equations (3) and (4). (Figure 4 of Tuppi et al. 2020).

Interpretation. Even though the ensemble size varies substantially, the rate of convergence stays 
roughly constant. Therefore, using large ensemble size can be seen as unmeaningful burning of 
computer resources. Example: convergence tests with 20 member and 50 iterations, and 50 
members and 20 iterations have both used 1000 forecasts with parameter perturbations (highlighted 
in Figure S4). However, the former option leads to much better convergence. Instead using very 
small ensembles was observed to make the convergence tests occasionally unstable so we 
recommend to use moderate ensemble size of some 20 members.



Figure S5: Evolution of θ2 in repeated convergence tests with two selected forecast range – 
ensemble size combinations highlighted in Figure S3. The level of realism is L1 on the left and L2 
on the right. Tests A1 to A4 have been run with forecast range of 48 hours and ensemble size of 20 
members, and tests B1 to B4 with 24 hours and 26 members. EPPES was used as an optimiser in 
these examples. Components of fCRPS have been calculated using equations (3) and (4). (Figure 5 
of Tuppi et al. 2020).

Interpretation. Both optimal and suboptimal combinations lead to reproducible convergence with 
L1 as is shown in the left-hand side panel. Those convergence tests produce relatively similar 
results every time. Instead, in L2 tests in the right-hand side panel only the optimal combination 
labelled with B1 to B4 yields reproducible convergence. This gives further support that 24 hours is 
optimal forecast range at least for parameter θ2. Results with  θ1 were less conclusive (not shown).



Figure S6: Mean values of the parameter distributions proposed by EPPES at the end of the 
convergence tests. Mean values of θ1 are on the left and mean values of θ2 on the right. Purple 
(green) colour means that the final mean values are larger (smaller) than the default value. (Figure 6
of Tuppi et al. 2020).

Interpretation. Optimal parameter values seem to depend on the forecast range used. We tested 
some of those parameter values proposed by EPPES, and run regular ensemble forecasts, and then 
compared the forecasts to the control forecasts with ∆Em. Indeed the cost function values were 
lower than when default parameter values were used. Therefore this phenomenon is not caused by 
the tuning infrastructure but it is actually a sign that model closure parameters and properties of 
ensemble forecasts are connected. Most likely perturbing closure parameters affects how much the 
ensemble forecasts can generate spread here so that the optimal parameter values lead to slightly 
smaller spread than the default values. This is not a problem for algorithmic ensemble based tuning 
but a feature, which should be kept in mind.



Figure S7: Progress of the convergence in the eight-parameter test. The parameter values
and uncertainties have been normalised with their default values. Black dots show sampled



parameter values, red line with stars shows parameter mean value, blue lines with dots show mean 
value ±2 standard deviations and the green line shows the default parameter value that is 1.0 due to 
the normalisation. The text boxes indicate the remaining parameter off-set, which is the relative 
distance between the final parameter mean value and the default value. Initial parameter off-set is
randomly plus or minus 10 %. Forecast range is 24 hours and ensemble size 20 members in this L1 
convergence test. ΔEm is used as the cost function and EPPES as the optimiser. (Figure 7 of Tuppi et
al. 2020).

Interpretation. All eight parameters converge satisfactorily. Added dimensionality does not seem 
to hinder EPPES to find the parameter default values. Some off-set is often left but the off-set is not 
statistically significant as the default value stays within the uncertainty. Successful convergence test
with eight parameters raises the probability that fully-realistic tuning of entire weather model with 
some 20 parameters at once is possible.
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