Regional pattern of annual snow cover duration in the Greater Alpine Region

Markus Hrachowitz
The value of real team work

A big “Thank You” to all involved so far

Stefan Fugger
Chris Bouman
Karsten Schulz
Susan Steele-Dunne

...and many others: Katalin Bene, Marco Borga, Thijs van Esch, Matthew Herrnegger, Qiaodan Liu, Duro Parajka, Francesca Pellicciotti, Daniele Penna
Seasonal snow pack

Life-line of societies and ecosystems in the Northern Hemisphere

Seasonal snow pack
- affects timing and magnitude of spring floods
- sustains summer low flows

Relevance for
- Drinking water
- Hydropower production
- Agricultural water supply
- Industrial water supply
- Shipping
- Recreational industry

"How much can we save?"

Hammond et al. (2018)
Annual snow cover duration (D_{SC})

What do we know?

What is it?
Number of days in a year a given location is covered by snow.

Why is it useful?
Less information content than SWE, but directly observable at larger scales and thus lower uncertainties.
Annual snow cover duration (D_{SC})

What is the knowledge gap?

Observation-based studies

Remote-sensing data

- Low temporal resolution (e.g., NOAA AVHRR)
- Little detail

Local scale

- Little regional context
- Not generalizable

In-situ observations

Point-scale

- Very scarce
- No spatial context
- Not generalizable

Modelling studies

Local to global scale

- Data uncertainty
- Model uncertainty

References:

- Hori et al. (2017)
- Klein et al. (2016)
- Marke et al. (2015)
- Redpath et al. (2019)
Annual snow cover duration

Greater Alpine Region (GAR)

- 750,000 km² (~10% of Europe)
- 12 countries
- Covers the Alps, parts of the Balkan, the Apennine, the Ardeche, and the Cevennes
- Divided into 4 climatic sub-regions

Objective:
Seamless, high-resolution analysis of regional differences in annual snow cover duration and their sensitivities to climatic drivers across the entire GAR

Formayer and Nardeem (2013)
Annual snow cover duration in GAR

Regional snowline elevation method (RSLE)

Data to determine D_{SC} (2000-2018, daily):
- Normalized difference snow index from Modis MOD10A1 (500x500m)
- In-situ observations of snow cover at ~2500 locations

What is the RSLE?
- **Spatial filter** to reduce cloud cover
- **Problem:** clouds can cover individual grid cells
- Exploits variability of cloud cover
- Assumes homogeneous snow line elevation over specified area (“tile”) at any given time step
- The larger the tile, the lower the probability of no data due to cloud cover but the higher uncertainties in snow line elevations.

Modis pixels
Regional snowline elevation method (RSLE)

Data to determine D_{SC} (2000-2018, daily):
- Normalized difference snow index from Modis MOD10A1 (500x500m)
- In-situ observations of snow cover at ~2500 locations

What is the RSLE?
- **Spatial filter** to reduce cloud cover
- **Problem:** clouds can cover individual grid cells
- Exploits variability of cloud cover
- Assumes homogeneous snow line elevation over specified area ("tile") at any given time step
- The larger the tile, the lower the probability of no data due to cloud cover but the higher uncertainties in snow line elevations.
Annual snow cover duration in GAR

Regional snowline elevation method (RSLE)

Estimate RSLE for each time step in each tile:

From all not cloud covered pixels within a tile calculate for each elevation:

\[S_h(t) = P_{s,b,h}(t) + P_{l,a,h}(t) \]

\(S_h \) is a scatter value at elevation \(h \);
\(P_{s,b,h} \) number of pixels with snow cover below elevation \(h \)
\(P_{l,a,h} \) the number of no-snow pixels above elevation \(h \).

For each time step RSLE is the elevation where \(S_h \rightarrow \min \).

Krajci et al. (2014)
Annual snow cover duration in GAR

Estimation of annual snow cover duration from RSLE

ANALYSIS STEPS

DATASETS

- Regional Snow Line Elevation (RSLE) time series (Section 4.1)
 - Splitting study region into ‘tiles’ for each tile (25 x 25 km²)
 - Calculation of daily RSLE values
 - Testing influence of exposure to solar radiation on RSLEs (Section 4.2)

- Calculate RSLE time-series for each tile (25 x 25 km²)
- Calculate \(D_{SC,RSLE} \) for each year in at each elevation in each tile from RSLE time-series
- Compare \(D_{SC,RSLE} \) estimates to \(D_{SC,station} \)

- Average \(D_{SC,RSLE,2013} \) for elevation band 700-800m

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Regional snow line elevation RSLE - snapshots

Snow season 2000/2001

October 1 December 1 February 1 April 1

Snow season 2017/18

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Regional snow line elevation RSLE – temporal evolution

Pronounced differences - between elevations - regions

Snow season starts ~2 weeks later

Melt-out ~2 weeks earlier

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Regional snow line elevation RSLE – influence of aspect

Low exposure locations (e.g. North aspect):
- Earlier start of snow accumulation (up to 3 weeks)
- Later melt-out (up to 4 weeks)
- Stronger differences at higher elevations

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Long-term mean annual snow cover duration $D_{SC,RSLE}$ (2000-2018)

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Regional differences in $D_{SC,RSLE}$

- $D_{SC,RSLE}$ 1-2 months longer in North
- $D_{SC,RSLE}$ <1 month longer in East

Fugger et al. (in prep.)
Regional differences in $D_{SC,RSLE}$

At same elevations:
- $D_{SC,RSLE}$ 1-2 months longer in North
- $D_{SC,RSLE}$ <1 month longer in East

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Regional differences in $D_{SC,RSLE}$

- $D_{SC,RSLE}$ 1-2 months longer in North
- $D_{SC,RSLE}$ <1 month longer in East

At same elevations

Fugger et al. (in prep.)
Annual snow cover duration in GAR

$D_{SC,RSLLE}$ vs. $D_{SC,station}$

- Difference $D_{SC,RSLLE}$ vs. $D_{SC,station}$ higher at low elevations
- D_{SC} highly variable at low elevations, more stable at higher elevations
- Increase in low elevation D_{SC} variability since 1970, stable at higher elevations

Fugger et al. (in prep.)
Annual snow cover duration in GAR

$D_{SC,RSLE} \text{ vs. } D_{SC,station}$

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Temporal trends in $D_{SC,RSLE}$ vs. $D_{SC,station}$

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Temporal trends in $D_{SC,RSLE}$ vs. $D_{SC,station}$

Along main Alpine ridge D_{SC} decreases with rate of 5 – 10 days per decade

In NE-region D_{SC} decreases with rate of up to 25 days per decade

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Temporal trends in $D_{SC,RSLE}$ at different elevations

Low- and mid-elevation regions most sensitive to change

Fugger et al. (in prep.)
Annual snow cover duration in GAR

Temporal trends in $D_{SC,RSLE}$ at different elevations

North:
- at low- to mid-elevations, temperature dominant control on $D_{SC,RSLE}$
- at high-elevations, precipitation dominant

South:
- precipitation dominant control on $D_{SC,RSLE}$ at all elevations

Fugger et al. (in prep.)
Thank you!