Tropospheric aqueous-phase oxidation of green leaf volatiles with 'OH and SO₄' and NO₃' radicals © Authors. All rights reserved Kumar Sarang^{1*}, Tobias Otto³, Krzysztof Rudzinski¹, Irena Grgić², Klara Nestorowicz¹, Hartmut Herrmann³ and Rafal Szmigielski^{1*} Contact info: ksarang@ichf.edu.pl, ralf@ichf.edu.pl ¹Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland ²Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia ³Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany # Introduction Numerous green leaf volatiles (GLVs) are released into the atmosphere due to the stress, cell damage or wounding.1 **Secondary Organic Aerosol (SOA)** formation through aqueous-phase reaction of GLV ### **Motivation** - Kinetic investigations of GLVs in the gas phase have already been reported^{2,3}, while there is no kinetic data on the aqueous phase reactions of selected C6 and C5 GLVs. - Significant gap in our knowledge of SOA through aqueous-phase processes. - GLVs as a source of SOA is still poorly recognized. - In the present study, we focussed on the kinetic studies of GLVs with *OH, SO₄*and NO₃ radicals as a possible source of aqueous SOA. ## **Experimental method** Kinetic setup ## measurement cw laser cell excimer laser monochromator photodiode computer trigger Figure 1: Laser flash photolysis-laser long path absorption (LFP-LLPA) setup similar to previous studies⁵ k_{2nd} is the second order rate constant of **R 1** k_{ref} is the overall second order rate constant of **R 2-4**, Measurement **CW** laser # oscilloscope **Table 1: Experimental conditions** **Precursors** Radical | $A[(SCN)_2^-]_0$ | $\frac{k_{2nd}[GLV]}{1}$ | |-----------------------------------|-----------------------------| | $\overline{A_{[(SCN)_2^-]_{-1}}}$ | $-\frac{1}{k_{ref}[SCN^-]}$ | •OH + GLV → Products $SCN^{\bullet} + SCN^{-} \Leftrightarrow (SCN)_{2}^{\bullet-}$ **(1)** **R1** **R2** **R3** **R4** (Schaefer and Herrmann, 2018) $$k_{ref}(T) = e^{(28.87)-1690/T} L \, mol^{-1} s^{-1}$$ (2) (Zhu, Nicovich et al. 2003) Competition kinetics⁴ ### (mol L⁻¹) (nm) (nm) *OH $[H_2O_2] = 2 \times 10^{-4}$ competition 248, 308 407, 473 $[KSCN] = 2 \times 10^{-5}$ $[S_2O_8^{2-}] = 5 \times 10^{-4}$ direct SO₄•-248, 308 407, 473 NO_3 $[S_2O_8^{2-}] = 0.03$ 351 635 direct $[NO_3] = 0.1$ Results Experimental: 1-penten-3-ol + OH 12.5 **Excimer laser** Figure 2: Arrhenius plots depicting temperature dependence of the reaction of 1-penten-3-ol, cis-2-hexen-1-ol and 2-E-hexanal with 'OH, SO₄ and NO₃ respectively | • | Arrhenius | plot | shows | the | weak | |---|------------|--------|----------|--------|------| | | temperatur | e de | ependenc | e of | the | | | aqueous-pl | nase r | eactions | of GL\ | /s. | Experimental rate constant considerably fast (order 10⁷-10⁹). Table 2: Experimentally observed rate constants for reactions of GLVs with 'OH, SO₄ and NO₃ at 298 K. | GLV | Radical | k _{obs} | | | |----------|--------------------|---|--|--| | | | 10 ⁸ L mol ⁻¹ s ⁻¹ | | | | P-3-ol | | 63.0 ± 1.4 | | | | Hex-1-ol | •OH | 66.6 ± 3.0 | | | | 2-Hexal | | 47.8 ± 3.1 | | | | P-3-ol | | 9.4 ± 1.0 | | | | Hex-1-ol | SO ₄ •- | 25.3 ± 3.0 | | | | 2-Hexal | | 4.8 ± 0.2 | | | | P-3-ol | | 1.5 ± 0.2 | | | | Hex-1-ol | NO ₃ • | 8.4 ± 2.3 | | | | 2-Hexal | | 0.3 ± 0.1 | | | # Conclusions - Temperature dependent kinetic investigation of GLVs (1penten-3-ol, cis-2-hexen-1-ol and 2-E-hexanal) with •OH, SO₄• and NO₃• - eactivity order of GLVs: *OH > SO₄*- > NO₃* - Higher is the rate constant, higher is the percentage diffusion and lower is the calculated activation energy. # Atmospheric implications - Aqueous-phase reactions were investigated for lifetimes in deliquescent, haze and cloud water. - Order of aqueous-phase lifetime follows the order of increase in liquid water content, and hence, maximum in deliquescent water and minimum in cloud water ranging from several days to single minutes. ## Table 5: Activation parameters calculated using Arrhenius equation determined | Radical | GLV | $E_A/kJ \ mol^{-1}$ | $A/L \ mol^{-1} \ s^{-1}$ | $\Delta H^{\dagger} kJ mol^{-1}$ | $\Delta S^{\dagger} \boldsymbol{J} \boldsymbol{mol^{-1}K^{-1}}$ | $\Delta G^{\dagger} kJ mol^{-1}$ | |--------------------|----------|---------------------|-----------------------------------|----------------------------------|---|----------------------------------| | SO ₄ ·- | P-3-oL | 5.19 ± 0.78 | $(7.86 \pm 0.13) \times 10^9$ | 2.71 ± 0.50 | -63.80 ± -1.09 | 21.70 ± 4.40 | | | Hex-1-ol | 9.50 ± 1.61 | $(1.11 \pm 0.03) \times 10^{11}$ | 7.02 ± 1.47 | -41.70 ± -1.33 | 19.50 ± 4.71 | | | 2-Hexal | 4.45 ± 0.88 | $(2.89 \pm 0.06) \times 10^9$ | 1.97 ± 0.48 | -72.10 ± -1.46 | 23.50 ± 6.20 | | ,OH | P-3-oL | 12.80 ± 1.54 | $(1.04 \pm 0.03) \times 10^{12}$ | 10.30 ± 1.54 | -23.20 ± -0.65 | 17.20 ± 3.06 | | | Hex-1-ol | 9.41 ± 1.77 | $(2.47 \pm 0.08) \times 10^{11}$ | 6.94 ± 1.62 | -35.10 ± -1.19 | 17.40 ± 4.66 | | | 2-Hexal | 11.20 ± 1.54 | $(4.31 \pm 0.12) \times 10^{11}$ | 8.74 ± 1.49 | -30.50 ± -0.88 | 17.80 ± 3.55 | | NO ₃ · | P-3-oL | 18.90 ± 2.97 | $(2.50 \pm 0.14) \times 10^{11}$ | 16.40 ± 3.20 | -35.00 ± -1.99 | 26.80 ± 6.76 | | | Hex-1-ol | 11.6 ± 1.64 | $(9.88 \pm 0.327) \times 10^{10}$ | 9.16 ± 1.60 | -42.7 ± -1.41 | 21.9 ± 4.56 | | | 2-Hexal | 17.20 ± 2.03 | $(3.16 \pm 0.13) \times 10^{10}$ | 14.70 ± 2.16 | -52.20 ± -2.20 | 30.30 ± 5.71 | © Authors. All rights reserved References [1] Fisher, A. J., Grimes, H. D., & Fall, R. (2003). Phytochemistry.. [2] Shalamzari et al, (2014) Environ. Sci. Technol. [3] Davis, M. E., & Burkholder, J. B. (2011). Atmos. Chem. Phys. [4] Behar, D., Bevan, P. L. T., & Scholes, G. (1972). J. Phys. Chem. [5] Otto, T., Stieger, B., Mettke, P., & Herrmann, H. (2017). J. Phys. Chem. A, 121, 6460-6470. [6] Schaefer and Herrmann, Phys. Chem. Chem. Phys., 2018. [7] L. Zhu, J. M. Nicovich and P. H. Wine, Aquatic Sciences, 2003.