The benefit of pre- and postprocessing streamflow
forecasts for 119 Norwegian catchments, evaluated
within the frame of an operational flood-forecasting
system
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Ensemble forecasts are often biased and under-dispersed,
and we investigate how processing schemes can improve
flood forecasts

In this presentation we aim at answering the following research questions

e Are there differences in the performance of correction/processing schemes
when applied to all the data compared to the flood situations of the study?

e Can we detect any regional or seasonal patterns?




ECMWEF-ENS temperature and precipitaion are forced
the operational HBV model for flood-forecasting
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were several floods affecting
catchments in large parts of
Norway

In 2014 and 2015 there G

Oct 2015 - AR

Typical flood generating

prOceSSeS July 2015 - Snowmelt

Snowmelt: often spring floods inland and high
elevations

Rain induced: autumn and summer showers

May 2014 —Snowmelt

Atmospheric rivers (AR) are responsible for the it “))'
most extreme floods affecting western, coastal " \,\}- \
L8
Norway L\ el
Dec 2015 — Rain N Sep 2015 — Rain

D



The ECMWEF ensemble T and P are used raw and applied different
preprocessing schemes

4 N
Preprocessing CALB) refers to the calibration method applied to the
P operational ensemble forecast by Met Norway;, in the
sl period 2014 and 2015, and includes:
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T cAL * Quantile mapping applied to temperature (T)
e Zero adjusted gamma distribution applied to

Weather prediction
model

<§E <;t precipitation (P)
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BMA® refers to Bayesian model averaging applied to
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Combinations of T and P are forced the HBV models. Box-cox
transformed streamflow is applied BMA, which enables an evaluation of
the added effect of postprocessing
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Best schemes for 119 catchments all data, vs 79 catchments only floods
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The spatial distribution of optimal schemes indicates that the

success depends on location

The optimal
scheme is defined
by CRPS for floods

8 80 Catchments LT 5 days
* Postprocessed 37
* Not postprocessed 43

Postprocessing (blue) has effect for inland
and high elevated catchments, less for the
coastal catchments

and here
presented for .
lead-time 5 days 4 SO

Other
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Preprocessing P alone and in combination
with T improves the coastal flood forecasts
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To assess the seasonal
differences in
predictability, we used

the critical success index
(CSI6))

The CSl indicate success for predictions
exceeding pre-defined flood threshold.
In this set-up multiple schemes can be
successful for each evaluated
catchment.

Each bar indicates the number of
catchments that achieved the best CSI
for each processing scheme

v Spring has a longer predictability for
more schemes
v" In autumn there is almost no
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Main findings

* The best processing schemes for all data were not necessarily the
best for flood data

» Especially the effect of postprocessing is less pronounced for floods

* We find regional differences in how the applied schemes improve the
flood predictions (CRPS)

e Coastal versus inland areas

* The ensemble forecasts are less good at predicting autumn floods,
and especially for longer lead-times

* emphasis should hence be focused on methods to improve autumn
precipitation and floods forecasting

* Flood forecasts do benefit from pre- and/or postprocessing
* the optimal processing approaches does, however, depend on region,

catchment and season (0. @
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