

Bundesministerium für Wirtschaft und Energie

RUHR-UNIVERSITÄT BOCHUM

Investigating surface morphology and transport parameters of single fractures

Sascha Frank, **Thomas Heinze**, Mona Ribbers, Stefan Wohnlich

EGU 2020 - Online | 4 - 8 May 2020 | Session HS8.1.2

RUHR-UNIVERSITÄT BOCHUM

Sandstone cores

Flechtinger Sandstone

- Bebertal, Flechtinger mountain hoist (Sachsen-Anhalt)
- Permian, red-brown colored
- Diameter 100 mm, Length 150 mm
- Porosity: 5.8 12.5 % (Zang, 2007;
 Blöcher et al., 2014)
 9.6 % ± 0.1 % (Frank et al., 2020)
- Composition: 63-64 % Quartz
 20-24 % Feldspar
 12 % Phyllosilicate

(Analyzed by Krakow Rohstoffe GmbH)

Remlinger Sandstone

- Remlingen (Würzburg),
 Thüngersheimer Anticline
- Triassic, red colored
- Diameter 100 mm, Length 150 mm
- Porosity: 13.1 ± 0,1 % (Schuster, 2017)
 12.9 % ± 0,3 % (Frank et al. 2020)
- Composition: 62 % Quartz
 18 % Feldspar
 18 % Phyllosilicate
 (Analyzed by Krakow Rohstoffe GmbH)

inflow of

destilled and vented water

RUHR-UNIVERSITÄT BOCHUM

Experimental investigations

Darcy and tracer experiments

- Injection: 1 ml of a 2 molar NaCl solution
- Measuring electric conductivity
- Analysis of 30 break through curves (BTC)
 - Calculating flow and transport parameters
 - Aperture width
 - Velocity
 - Dispersion coefficient

RUB

RUHR-UNIVERSITÄT BOCHUM

Numerical Modelling - JRC

- High resolution 3D-Laser scans of both fracture surfaces of each core
- Defining coordinate system
- Interpolating a closed surface based on a regular grid from the recorded data
- Calculating longitudinal and transversal joint roughness coefficient (JRC) for n points along x/y-direction
 - Calculating mean JRC

Vertical heights relative to a reference plane

Frank et al. (2020), in Submission

Numerical modelling

Numerical Modelling - BTC

- Using different methods to reproduce measured BTC's
 - Advection-dispersion-equation fit (ADE)
 - Moment analysis
 - Continuous time random walk fit (CTRW)
- Compare results from all methods with JRC
 - Aperture width
 - Velocity
 - Dispersivity
 - Dispersion coefficient

Hydraulic flow and transport parameters

Results F&T

- Fracture aperture width / Permeability (Cubic law):
 - Flechtinger: 120 μm 140 μm / $1.2 1.7 \cdot 10^{-9}$ m²
 - ightharpoonup Remlinger: 70 µm 100 µm / 4.4 8.8 · 10⁻¹⁰ m²
- **Velocity:** comparable results from ADE and Moment analysis, underestimated with CTRW fit
- **Dispersion coefficient:** for some samples overestimated with moment analysis
- **Dispersivity:** comparable results from all methods, for some samples overestimated with CTRW fit
- ✓ More reliable results from ADE fit and Moment analysis

Frank et al. (2020), in Submission

Roughness of fracture surfaces

Results JRC

- Joint roughness coefficient:
 - ➤ Flechtinger: 13.3 14.1 (Exception 11.8)
 - ➤ Remlinger: 11.2 12.8
- ✓ Higher JRC for Flechtinger cores accompanying with higher aperture widths
 - One exception for Fle_7_100_S1, which is in range of Remlinger cores, but was as well optically more homogenous and isotropic like Remlinger cores

Frank et al. (2020), in Submission

Conclusion

- ✓ No additional dispersion effect due to surface roughness found as suspected by phenomenological models
 - Dispersivity is very similar for all JRC values over all samples
 - Velocity is most influenced by aperture width and Dispersion coefficient by velocity
- ✓ Surface roughness may have an influence, but the range we have measured is too small

Frank et al. (2020), in Submission

Thank you for your attention

06.05.2020

Literature

06.05.2020

Frank, S., Heinze, T., Ribbers, M., Wohnlich S. (2020): Experimental study on the effect of roughness on transport properties of single fractures. In submission in: Journal of Contaminant Hydrology - Elsevier. Submitted on April 14, 2020