Investigating surface morphology and transport parameters of single fractures

Sascha Frank, Thomas Heinze, Mona Ribbers, Stefan Wohnlich

EGU 2020 - Online | 4 - 8 May 2020 | Session HS8.1.2
Aim

Deeper understanding of flow and transport processes in fractures

Samples

Experimental investigations

Hydraulic flow and transport parameters

Numerical modelling

Roughness of fracture surfaces

Results

Relationship?
Sandstone cores

Flechtinger Sandstone
- Bebertal, Flechtinger mountain hoist (Sachsen-Anhalt)
- Permian, red-brown colored
- Diameter 100 mm, Length 150 mm
- Porosity: 5.8 – 12.5 % (Zang, 2007; Blöcher et al., 2014)
 9.6 % ± 0.1 % (Frank et al., 2020)
- Composition: 63-64 % Quartz
 20-24 % Feldspar
 12 % Phyllosilicate
 (Analyzed by Krakow Rohstoffe GmbH)

Remlinger Sandstone
- Remlingen (Würzburg), Thüngersheimer Anticline
- Triassic, red colored
- Diameter 100 mm, Length 150 mm
- Porosity: 13.1 ± 0.1 % (Schuster, 2017)
 12.9 % ± 0.3 % (Frank et al. 2020)
- Composition: 62 % Quartz
 18 % Feldspar
 18 % Phyllosilicate
 (Analyzed by Krakow Rohstoffe GmbH)
Experimental investigations

Darcy and tracer experiments

- Injection: 1 ml of a 2 molar NaCl solution
- Measuring electric conductivity
- Analysis of 30 breakthrough curves (BTC)
 - Calculating flow and transport parameters
 - Aperture width
 - Velocity
 - Dispersion coefficient

Frank et al. (2020), in Submission
Numerical Modelling - JRC

- High resolution 3D-Laser scans of both fracture surfaces of each core
- Defining coordinate system
- Interpolating a closed surface based on a regular grid from the recorded data
- Calculating longitudinal and transversal joint roughness coefficient (JRC) for n points along x/y-direction
 ➢ Calculating mean JRC

Vertical heights relative to a reference plane

Frank et al. (2020), in Submission
Numerical Modelling - BTC

- Using different methods to reproduce measured BTC's
 - Advection-dispersion-equation fit (ADE)
 - Moment analysis
 - Continuous time random walk fit (CTRW)

- Compare results from all methods with JRC
 - Aperture width
 - Velocity
 - Dispersivity
 - Dispersion coefficient

Frank et al. (2020), in Submission
Fracture aperture width / Permeability (Cubic law):
- Flechtinger: 120 µm – 140 µm / 1.2 – 1.7 ∙ 10⁻⁹ m²
- Remlinger: 70 µm – 100 µm / 4.4 – 8.8 ∙ 10⁻¹⁰ m²

Velocity: comparable results from ADE and Moment analysis, underestimated with CTRW fit

Dispersion coefficient: for some samples overestimated with moment analysis

Dispersivity: comparable results from all methods, for some samples overestimated with CTRW fit

More reliable results from ADE fit and Moment analysis
Results JRC

- Joint roughness coefficient:
 - Flechtinger: 13.3 – 14.1 (Exception 11.8)
 - Remlinger: 11.2 – 12.8

✓ Higher JRC for Flechtinger cores accompanying with higher aperture widths
 - One exception for Fle_7_100_S1, which is in range of Remlinger cores, but was as well optically more homogenous and isotropic like Remlinger cores.

Frank et al. (2020), in Submission
Conclusion

✓ No additional dispersion effect due to surface roughness found as suspected by phenomenological models
 ➢ Dispersivity is very similar for all JRC values over all samples
 ➢ Velocity is most influenced by aperture width and Dispersion coefficient by velocity

✓ Surface roughness may have an influence, but the range we have measured is too small

Frank et al. (2020), in Submission
Thank you for your attention
Literature