Introduction

- Water is necessary for the sustenance of life, but its availability at sustainable quantity and quality is often complicated by numerous factors.
- A considerable increase in population, migration and socio-economic activities has led to drastic changes in the environment over the last few decades.
- These changes have in turn affected the stationarity of climate, that is climate change is beyond the past variability.
- Massive land use/land cover change (LULCC) is a result of human activities.
- Studies indicate the effect of LULCC on hydrological regime and mark the necessity of its timely detection at appropriate scales for efficient water resource management.
- Nethravathi River Basin is of great socio-economic importance in the region.
- The river water is used for religious, industrial, domestic and irrigation purposes.
- Hence detailed spatial-temporal assessment of impacts of climate change and LULCC on streamflow and sediment yield of the basin is crucial for watershed management.

Objectives

To obtain the effect of LULC and climate changes on streamflow of Nethravathi basin using SWAT.

Methodology

- **Data**
 - Streamflow Data: 1990-2018 Daily Data, Central Water Commission, India.
 - Meteorological Data: 1990-2018 Daily Data, Indian Meteorological Department, India.
 - Soil Data: 2012 Description of soil types (1 km x 1 km), Food and Agriculture Organization (FAO 2012).
 - Land use: 2013 Land Use Dataset.
 - DEM: ALOS/PALASAR 12.5 m.

- **Model**
 - SWAT Model
 - Simulate Streamflow
 - SWAT-CUP
 - Adjust sensitive parameters

Results

- The streamflow increased steadily (5.02%) with changes in LULC from 1990 to 2018.
- The spatial extent of the LULCC classes of built-up (3.82%–6.51%), water bodies (0.76%–0.99%), agriculture (11.96%–17.89%) increased, whereas that of forest (66.56%–51.7%), fallow (3.82%–6.13%), and barren land (13.07%–16.76%) decreased from 1990 to 2018.

Conclusions

- The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, in the catchment during this period.
- Thus, hydrological modelling integrating climate change and LULC can be used as an effective tool in estimating streamflow of the basin.

Selected References

