The impact of the 2019 Ridgecrest earthquake sequence on time-dependent earthquake probabilities for the Garlock fault, California, USA

Sara Carena¹, **Alessandro Verdecchia**², Alessandro Valentini³, Bruno Pace³, Francesco Visini⁴

¹LMU University, Munich, Germany
²McGill University, Montreal, Canada
³DiSPUTer, Università G. d’Annunzio di Chieti-Pescara, Italy
⁴Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italy

alessandro.verdecchia@mail.mcgill.ca
Ridgecrest earthquakes (M 6.4, M 7.1) occurred in a region characterized by coseismic + postseismic positive Coulomb stress changes (ΔCFS) due to several historical and paleoseismological earthquakes (Verdecchia & Carena, 2016)
ΔCFS in Eastern California Shear Zone before Ridgecrest earthquake

<table>
<thead>
<tr>
<th>Year (A.D.)</th>
<th>Event</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fish Lake (LC)</td>
<td>6.8</td>
</tr>
<tr>
<td>2</td>
<td>Fish Lake (Oasis)</td>
<td>6.7</td>
</tr>
<tr>
<td>3</td>
<td>Mojave (SAF)</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>Garlock</td>
<td>7.7</td>
</tr>
<tr>
<td>5</td>
<td>Panamint Valley</td>
<td>7.1</td>
</tr>
<tr>
<td>6</td>
<td>Furnace Creek</td>
<td>7.2</td>
</tr>
<tr>
<td>7</td>
<td>Wrightwood</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>Fort Tejon</td>
<td>7.9</td>
</tr>
<tr>
<td>9</td>
<td>Owens Valley</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>Kern County</td>
<td>7.3</td>
</tr>
<tr>
<td>11</td>
<td>Landers</td>
<td>7.2</td>
</tr>
<tr>
<td>12</td>
<td>Hector Mine</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Ridgecrest earthquakes (M 6.4, M 7.1) occurred in a region characterized by coseismic + postseismic positive Coulomb stress changes (ΔCFS) due to several historical and paleoseismological earthquakes (Verdecchia & Carena, 2016).
ΔCFS on the left-lateral Garlock fault after Ridgecrest earthquakes

Ridgecrest earthquakes slip models by Xu et al. (2019)

Most Recent Event El Paso Peaks
A.D. 1450-1640
Preferred age A.D. 1540

Most Recent Event Twin Lakes
A.D. 1520-1850

Same Event???

ΔCFS calculated only considering events occurred after the A.D. 1540 Garlock earthquake
ΔCFS on the left-lateral Garlock fault after Ridgecrest earthquakes

Max ΔCFS of about 10 bars on central Garlock fault

Effect from the 2019 Ridgecrest earthquakes
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

BPT (Brownian Passage Time) curves for a M ≥ 7 event on central Garlock fault

Paleoevents at El Paso Peaks site (Dawson et al., 2003)
Central Garlock

- A.D. 1450-1640
- A.D. 675-950
- A.D. 250-475
- A.D. 25-275
- 3340-2930 B.C.
- 5300-4670 B.C.

Modified elapsed time
\[T_{\text{elap}'} = T_{\text{elap}} + \left(\frac{\Delta \text{CFS}_{\text{cum}}}{\tau} \right) \]

Modified recurrence time
\[T_{m'} = T_m - \left(\frac{\Delta \text{CFS}_{\text{cum}}}{\tau} \right) \]

\(\tau \) = tectonic loading (0.07 bar/yr)

\(\Delta \text{CFS}_{\text{cum}} = 10 \text{ bar} \)
\(T_m = 1322 \text{ yrs.} \)
\(CV = 0.99 \)
Paleoevents at El Paso Peaks site
(Dawson et al., 2003)
Central Garlock

A.D. 1450-1640
A.D. 675-950
A.D. 250-475
A.D. 25-275
3340-2930 B.C.
5300-4670 B.C.

Modified elapsed time
$$T_{elap} = T_{elap} + \frac{\Delta CFS_{cum}}{\tau}$$

Modified recurrence time
$$T_{m'} = T_m - \frac{\Delta CFS_{cum}}{\tau}$$

$$\tau =$$ tectonic loading (0.07 bar/yr)

How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

BPT (Brownian Passage Time) curves for a $M \geq 7$ event on central Garlock fault

T_m and CV based on the last 4 paleoevents at El Paso Peaks site considering that the fault is still within its latest seismic cluster

$\Delta CFS_{cum} = 10$ bar
$T_m = 481$ yrs.
$CV = 0.52$
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

Segmented Model

Subsections = 1 to 35
Dip angle = 90°
Seism. Thick. = 15 km

Eastern segment

Central segment

Western segment

Garlock Fault

Subsection

Length of ~1/2 down-dip width
(Field et al., 2014, UCERF3)

Rupture

Events that breaks the entire seismogenic thickness and involves at least 2 subsections (Aspect Ratio ≥ 1)
$M_w \geq 6.2$

595 unique ruptures

We evaluate the time-independent, long-term rate of ruptures on the Garlock fault system following an approach to solve for the long-term rate of every possible earthquake rupture on a fault system (Visini et al. 2019, SUNFiSH, https://doi.org/10.1007/s00024-019-02114-6)
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

Segmented Model

Following SUNFiSH:

Define maximum M_w of each rupture based on geometry

Slip rate (v) assigned to each subsection (slip rate profile).

Seismic moment rate for each rupture (\dot{M}_{Oi}):

$$\dot{M}_{Oi} = \mu LW v$$ (1)

Scale the seismic moment rate of each rupture by:

$$\dot{M}_{Oi-s} = \dot{M}_{Oi} \times \frac{\dot{M}_{Ot}}{\sum \dot{M}_{Oi}}$$ (2)

\dot{M}_{Ot} target seismic moment rate equal to 5.83×10^{17} N/m² obtained summing up the seismic moment rate of each subsection.

\dot{M}_{Oi-s} used to compute the activity rate of each rupture.
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

Segmented Model

Activity rates calculated using a single-value Poisson model, where the activity rates of each rupture (f_r) collapse into a single value that is given by the maximum magnitude (M_{rup}) and its mean recurrence time ($T_{mean-rup}$)

The $T_{mean-rup}$ of the maximum magnitude is computed using the criterion of “segment seismic moment conservation” (Field et al., 1999)

the frequency of earthquakes on each subsection (f_s) is computed summing the rates of ruptures by:

$$f_s = \sum_{r=1}^{R} G_{sr} f_r \quad (3)$$

G_{sr} is a matrix indicating whether the rth rupture involves the sth subsection (1 is so, 0 if not)
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

Segmented Model

The long-term mean recurrence interval of each subsection (μ_s) is computed as:

$$\mu_s = \frac{1}{f_s} \quad (4)$$

and the time-independent Poisson probability for each subsection is computed by:

$$P_{poiss} = 1 - e^{-t/\mu_s} \quad (5)$$

where t is the investigation time of the forecast.

We need time-dependent probabilities.
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

Segmented Model

We need time-dependent probabilities

Approach based on Field (2015)

First assumption is that the rth rupture will be the next (or only) event to occur and its expected recurrence interval is computed as a weight average over the μ_s of the sections involved:

$$\mu_r^{\text{cond}} = \frac{\sum \mu_s A_s}{\sum A_s} \quad (6)$$

The net occurrence probability for each rupture is computed as

$$P_r = P_r^{BPT} \left(\frac{\mu_r^{\text{cond}}}{\mu_r} \right) \quad (7)$$
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

Segmented Model

The BPT conditional probabilities for each conditional rupture (\(\mu_{r,cond}^{c}\)) are computed for a forecast window of 30 years, with coefficient of variations (CV) equals to (Field et al, 2015):

<table>
<thead>
<tr>
<th>CV</th>
<th>(M_{rup})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>(\leq 6.7)</td>
</tr>
<tr>
<td>0.4</td>
<td>(6.7 < M_{rup} \leq 7.2)</td>
</tr>
<tr>
<td>0.3</td>
<td>(7.2 < M_{rup} \leq 7.7)</td>
</tr>
<tr>
<td>0.2</td>
<td>(M_{rup} > 7.7)</td>
</tr>
</tbody>
</table>

and following Field and Jordan (2015), for an historical open interval \(T_{H}\) of 145 years. This means that no event has occurred during this interval.
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

Segmented Model

To see the impact of Coulomb stress variation on the time-dependent probabilities, we modified the μ_s as follow:

$$
\mu_s^{Mod} = \mu_s - \left(\frac{\Delta CFS}{\tau} \right) \tag{8}
$$

Then, we compute a modified μ_r^{cond}, using μ_s^{Mod} in the eq. 6 and so a modified P_r^{BPT} with $\mu_r^{condMod}$. Finally, the modified time-dependent probabilities due to coulomb stress variations are given by:

$$
P_r^{Mod} = P_r^{BPTMod} \left[\frac{\mu_r^{cond}}{\mu_r} \right] \tag{9}
$$
In this work we use long-term slip rates based on four deformation models (Field et al., 2015, BSSA, UCERF3)

Geologic: Based on geologic slip rates compilation

Zeng: Fault-based model for crustal deformation (GPS data and Geologic data) (Zheng & Shen, 2017, BSSA)

NeoKinema: Uses a combination of geodetic data and geologic slip rates (Bird, 2003)

ABM: Average block model of five different block kinematics models.

Here, following UCERF3 we use a weighted mean of the four models as follow:

ABM = 0.1, NeoKinema = 0.3, Zeng = 0.3, and the UCERF3 geological model = 0.3
Probability in the next 30 years for each subsection that the same subsection will rupture in a $Mw \geq 6.2$ earthquake (magnitude corresponding to a rupture which include two subsections or more). The red line represents the time-independent probability (Poisson), the black line represents the time-dependent (BPT) probability, and the dashed black line represents the time-dependent (BPT) probability when ΔCFS is included.
Segmented Model

Preliminary results

Probability gain/loss when comparing time-dependent (BPT) probabilities with and without ΔCFS, and time-independent (Poisson) probabilities. The probabilities refer to the occurrence of a $M \geq 6.2$ event on each of the subsections of the Garlock fault in the next 30 years.
How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault?

Preliminary Conclusions

The 2019 M 6.4 and M 7.1 Ridgecrest earthquakes have produced Coulomb stress increase up to 10 bars on the central segment of the Garlock fault.

Our results based on simple time-dependent (BPT) probability calculations show that the Ridgecrest earthquake have increased (from ~10% to ~15%) the probability of occurrence of a large earthquake (M ≥ 7) on the central Garlock fault in the next 30 years.

Preliminary results from a more realistic segmented model show an increase of probability (from ~14% to ~17%) for a M ≥ 6.2 event in the subsections where the largest ΔCFS from the Ridgecrest earthquakes were calculated.

Future work

Refine our segmented model including data from paleoseismological trenches.