Predicting atmospheric optical properties for radiative transfer computations using neural networks

Menno Veerman¹, Robin Stoffer¹, Caspar van Leeuwen², Damian Podareanu², Robert Pincus^{3,4} and Chiel van Heerwaarden¹

¹ Meteorology and Air Quality group, Wageningen University and Research, Wageningen, The Netherlands

² SURFsara, Amsterdam, The Netherlands

³ NOAA/Earth System Research Lab, Physical Sciences Division, Boulder, Colorado, USA

⁴ Cooperative Institute for Environmental Studies, University of Colorado, Boulder, Colorado, USA

EGU General assembly, 6 May 2020

Motivation

- Radiative transfer (RT) equations are well-known and can be solved with high accuracy.
- However, radiation computations in atmospheric models are computationally very expensive
 - Approximations needed to gain speed, e.g. coarser spatial/temporal resolution (e.g. Morcrette, 2000; Hogan & Bozzo, 2018) or spectral sampling (Pincus & Stevens, 2009)
- Machine learning is a promising tool to accelerate RT computations
 - Directly predicting radiative fluxes with neural networks may give speed-ups of >1 order of magnitude (e.g. Chevallier et al.,, 2018; Kransopolsky et al., 2005), but involves replacing the RT equations and therefore does not respect the well-understood underlying physics.
 - Alternative: emulating only the parts RT parametrizations that require most assumptions, not the RT equations

 Developing a machine learning-based parametrization for the gaseous optical properties to accelerate radiative transfer calculations

- Our approach:
 - Training neural networks to emulate the optical properties parametrization RRTMGP (Rapid Radiative Transfer Model for General circulation model application – Parallel; Pincus et al., 2019)
 - Using machine-specific optimised BLAS functions to significantly accelerate matrix computations when solving the neural networks
 - "case-specific" training (i.e. for a limited range of atmospheric conditions) to allow smaller and therefore faster neural networks

Three sets of "case-specific" neural networks

- One NWP-tuned set: wide range of thermodynamic variables, based on atmospheric profiles from the Radiative Forcing Model Intercomparison Project (Pincus et al, 2016)
- Two LES-tuned sets: range of thermodynamic variables in a single LES case
 - > Radiative Convective Equilibrium Model Intercomparison Study (RCEMIP; Wing et al., 2018)
 - Diurnal cycle of a convective boundary layer over grassland near Cabauw, the Netherlands (Vilà-Guerau de Arellano et al., 2014, Pedruzo-Bagazgoitia et al., 2017)
- All gases except water vapour and ozone are constant (suitable for NWP/LES)

Using a separate neural network per optical property, the networks are trained to predict the gaseous optical properties at all quadrature points (for the spectral integration) as calculated by RRTMGP

Training performance (NWP-tuned neural networks)

- Larger networks perform better (lower MSE)
- Performance of Linear networks is significantly worse: linear regression is not a suitable solution
- All predicted optical properties are highly accurate (R²>0.99), except for Linear networks

Explanation: *Linear* has no hidden layer, *1L-32* has 1 hidden layer of 32 nodes, *3L-32_64_128* has 3 hidden layers of 32, 64 and 128 nodes, respectively.

Trade-off between accuracy and speed (NWP-tuned networks)

- Errors of radiative fluxes based on neural networkpredicted optical properties, with respect to radiative fluxes based on optical properties of RRTMGP
 - With all network sizes, high accuracies for both longwave and shortwave radiation
- Depending on network size, our parametrization is between 3 to 7 times faster than RRTMGP
- Larger networks give more accuracy, but reduce the speed-up that can be achieved

Speedup vs mean absolute error of surface irradiance

LES-tuning (Cabauw, RCEMIP) vs NWP-Tuning

- Mean absolute errors of the downward radiative fluxes at the surface, based on profiles of the Cabauw (top) and RCEMIP (bottom) simlations
- In general higher accuracies with LES-tuning (especially for shortwave radiation), for the LES case the networks are trained for.
- Therefore, smaller neural networks suffice
 - Higher speed-up
- Although fluxes are quite accurate, NWP networks show some signs of overfitting

References

Morcrette, J. (2002). On the effects of temporal and spatial sampling of radiation fields on the ECMWF forecasts and analyses. Monthly Weather. Review, 128, 876-887

Hogan, R.J., Bozzo, A. (2018). A flexible and efficient radiation scheme for the ECMWF model. Journal of Advances in Modeling Earth Systems, 10, 1990-2009

Pincus R., Stevens, B. (2009). Monte carlo spectral integration: a consistent approximation for radiative transfer in large eddy simulations. Journal of Advances in Modeling Earth Systems, **1**

Chevallier F., Chéruy F., Scott N.A., Chédin A. (1998). A neural network approach for a fast and accurate computation of a longwave radiative budget. *Journal of Applied Meteorology*, **37**, 1385-1397.

Krasnopolsky V.M., Fox-Rabinovitz M.S., Chalikov D.V.. (2005). New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model. *Monthly Weather Review*, **133**, 1370-1383.

Pincus R., Mlawer E.J., Delamere J.S. (2019). Balancing accuracy, efficiency, and flexibility in radiation calculations for dynamical models *Journal of Advances in Modeling Earth Systems*, **11**, 3074-3089.

Pincus R., Forster P.M., Stevens B. (2016). The radiative forcing model intercomparison project (rfmip): Experimental protocol for cmip6. *Geoscientific Model Development*, **9**.

Wing A.A., Reed K.A., Satoh M., Stevens B., Bony S., Ohno T. (2018). Radiative--convective equilibrium model intercomparison project. *Geoscientific Model Development*, **11**, 793-813.

Vilà-Guerau de Arellano J., Ouwersloot H.G., Baldocchi D., Jacobs C.M.J. (2014). Shallow cumulus rooted in photosynthesis. *Geophysical Research Letters*, **41**, 1796-1802.

Pedruzo-Bagazgoitia X., Ouwersloot H.G., Sikma M., van Heerwaarden C.C., Jacobs C.M.J., Vilà-Guerau de Arellano J. (2017). Direct and diffuse radiation in the shallowcumulus vegetation system: Enhanced and decreased evapotranspiration regimes. *Journal of Hydrometeorology*, **18**, 1731-1748.

