Tropical sources of predictability for summer precipitation over Nordic European countries

Ramón Fuentes Franco, Torben Koenigk

May 2020
Motivation

In recent years, potential sources of predictability for summer precipitation over Europe have been identified.

- Different modes of atmospheric variability that cause dry or wet summers have been characterized (e.g. Saeed et al., 2014; O’Reilly et al. 2017, Wulff et al., 2017),

- Possible influences of soil moisture anomalies (Schär et al., 1999; Seneviratne et al., 2006)

- and linkages to changes in sources of moisture availability due to Sea Surface Temperature (SST) anomalies (Årthun et al., 2017), especially at multi-annual frequencies.
However, up to now it is still a challenge to understand which processes influence the variability of summer precipitation over Europe, as well as the inherent predictability, and the skill of current seasonal prediction systems to represent and predict these processes.

We show evidence that atmospheric anomalies over the North Atlantic and Europe, causing wet and dry summers over Northern Europe, have their origin in the tropical and subtropical Pacific in early spring.
Wettest minus driest summers in Sweden

GPCP Precipitation
Precipitation (mm/day) Composite Anomaly 1981–2010 climo

NOAA/ESRL Physical Sciences Division

© Authors. All rights reserved
We identify states of the climatic system preceding wet and dry summer conditions over Scandinavia and all Nordic European countries (NEC).

DJFM SST anomalies

**Wet summers**

**Dry summers**
Correlation coefficients of summer precipitation over SwedFin region and of geopotential height at 500 hPa (Z500) in different preceding months.
Correlation coefficients of geopotential height at 500 hPa (Z500) with Niño3 index (left) and with summer precipitation over SwedFin region (right).

Enclosed are shown the WH and WCan regions used as z500-based predictors. NEC and SwedFin regions for summer precipitation are also shown.
Comparison of spatial patterns of different modes of atmospheric variability during summer impacting the NEC climate variability


SNAO: Summer North Atlantic Oscillation

SEA: Summer East Atlantic mode. Wulff et al. 2017

© Authors. All rights reserved
Comparison of spatial patterns of different modes of atmospheric variability during summer impacting the NEC climate variability


SNAO: Summer North Atlantic Oscillation

SEA: Summer East Atlantic mode. Wulff et al. 2017
The behavior expressed by WH z500-based predictor shows systematic correlation with other variables during summer.
Empirical model for summer precipitation based on z500 anomalies during March

\[ P = 0.56 \text{WH} + 0.18 \text{WCan} + \varepsilon \]

\[ r(Z500, \text{SwedFin}) \]

\[ P = (\beta_1 \text{(WH)}) \text{WH} + (\beta_2 \text{(WCan)}) \text{WCan} \]

\[ r(\text{Validation, Obs}): 0.60 \]
How much better is our prediction compared to a random prediction?

To answer this question we calculated the Heidke skill score, that is a measure of the number of hits subtracting the expected skill of a random prediction.

In 100 summers, if we divide them in wet, normal and dry, we get a 33% chance that a random forecast will be correct.

So $E = 33\%$ of the total amount of summers we predict.

If Heidke $>33$ it means that our prediction is better than the random forecast.

<table>
<thead>
<tr>
<th>Categorical Variable</th>
<th>Heidke Skill Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{H - E}{T - E}$</td>
</tr>
</tbody>
</table>

$H =$ Number of hits
$E =$ Expected hits by chance
$T =$ Total number of cases
Validation

Heidke<33 means that a random forecast is better.

Test of precipitation anomaly persistence

Are wet springs followed by wet summers? Or is there a preferred behaviour of summer precipitation anomalies after observed anomalies during spring?

Heidke < 33 means that a random forecast is better.
Our method (upper figure) shows much more skill than the random forecast with all of Europe (especially the northern part) showing Heidke > 33%, while the persistence (lower forecast) forecast shows even worse results than the random forecast, showing even negative Heidke skill score.
Summary

We have shown that the Pacific-Northern European climate connection is detectable from early spring and that by choosing z500 predictors during March over the Pacific we get substantial skill for seasonal summer precipitation forecasts over NEC.

Besides broadening the understanding of the teleconnection processes that affect northern European climate, our findings are relevant because our method allow a simple but skilful estimate of the climate conditions several months in advance. This allows decision makers to make efforts to reduce environmental and socio-economic impacts through short-term adaptation and response to climate variability.
Thank you!

Fuentes-Franco and Koenigk (2020)
Tellus A. In Press
https://doi.org/10.1080/16000870.2020.1764303