Abstract ID: 5592

Semidiurnal currents in the Arctic Ocean's eastern Eurasian Basin

Till M. Baumann^{1, now 4}, Igor V. Polyakov¹, Laurie Padman², Seth Danielson³, Ilker Fer⁴, Susan Howard², Jenny Hutchings⁵, Markus Janout⁶, An Nguyen⁷, Andrey V. Pnyushkov⁸

1 International Arctic Research Center and College of Natural Science and Mathematics, University of Alaska Fairbanks (UAF), Fairbanks, AK, USA and Finnish Meteorological Institute, Helsinki, Finland. ² Earth & Space Research, Corvallis, OR, USA. ³ College of Fisheries and Ocean Sciences, UAF, Fairbanks, AK, USA. ⁴ Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway. ⁵ College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA. ⁶ Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany. ⁷ University of Texas at Austin, Institute for Computational Engineering and Sciences, Austin, TX, USA. ⁸ International Arctic Research Center, UAF, Fairbanks, AK, USA

- Current dynamics are increasing in the eastern Arctic
- enhanced mixing in a changing Arctic

EGU20 -OS1.11 - Till Baumann: Semidiurnal currents in the Arctic Ocean's eastern Eurasian Basin

Submitted at JGR

• Tides in the region are highly variable and much more energetic than expected • Together with vigorous wind-driven inertial currents, tides may contribute to

(adapted from Polyakov et al. submitted).

Background currents in the Arctic:

Two drivers of semidiurnal currents in the Arctic: Tides

- Often the dominant source of current variability in the Arctic
- Tidal signals are the sum of various tidal constituents

 $e.g: M_2 = Lunar semi-diurnal (12.42h)$

 $S_2 = Solar semi-diurnal (12h)$

Inertial currents

- Inertial currents are (mostly) wind driven
- They oscillate at inertial periods (the natural period for oscillations on Earth, depending on latitude and Earth's rotation)
- In the Arctic, inertial periods lay (mostly) between S₂ and M₂ periods
- Difficult or impossible to separate from tides

Abstract ID: 5592

126°E and their approximate location relative to the Atlantic Water (AW) layer and the Arctic Circumpolar Boundary Current (ACBC). ADCP = Acoustic Current Doppler Profiler.

(cm/s)²/cph 10⁶ 10' 10⁰

• Harmonic tidal analysis provides tidal ellipse parameters in 30-day sliding windows to resolve M₂ and S₂ Effectively 30-day smoothed • Caveat: Wind-driven inertial currents can lead to **spurious** tidal signals

EGU20 -OS1.11 - Till Baumann: Semidiurnal currents in the Arctic Ocean's eastern Eurasian Basin

Tidal analysis

Band-pass filtering

Currents are band-pass filtered over the semidiurnal domain (10-14h); this includes semidiurnal tides as well as wind-driven inertial currents

EGU20 -OS1.11 - Till Baumann: Semidiurnal currents in the Arctic Ocean's eastern Eurasian Basin

Results

At first glance:

- Highly energetic (> 20 cm/s) and highly variable
- Fortnightly stripes indicate tides (as opposed to inertial currents)

To be discussed in more detail: Seasonal variability

Wintertime deepening

-> Visible almost at everywhere; where does it come from?

- **Summertime amplification**
 - -> Currents > 30 cm/s in ice-free summers
 - -> Signature of **wind-driven inertial currents**
 - -> What role do tides play in this?

10-14 h band pass filtered raw speed, representing near-inertial currents. Gray shading at the top of the plots indicates sea-ice concentration (white=100%, black=0%).

Results

- 1. Wintertime deepening
 - Mostly due to baroclinic M₂
 tide
 - Deepening follows pycnocline and is correlated with sea ice, cycle
 - Decreases in offshore direction (due to critical latitude effect)
 - Tides are much stronger than expected (and predicted by barotropic model)

As on previous slide, but now showing time-depth plots of major axis amplitudes of the M_2 (left) and S_2 (right) constituents at the moorings across the continental slope. Pink lines show detrended potential density (σ) at the shallowest available level (for moorings at which this level is above the deepest ADCP observations) and the red line in the M1₄ panel shows sea-ice thickness from upward looking sonar observations (one-day low-pass filtered).

EGU20 -OS1.11 - Till Baumann: Semidiurnal currents in the Arctic Ocean's eastern Eurasian Basin

2. Summertime amplification

- Most likely wind-driven (surface intensified and during ice-free season)
- S₂ signal probably mostly spurious!
- <u>Is there any tidal</u> <u>contribution?</u>

Results

Regional ocean model set-up with realistic hydrography and forced by 3D tides

Regional maps of the eastern EB showing vertically integrated horizontal baroclinic energy flux for simulated tidal currents of M₂ (left) and S₂ (right) constituents for summer stratification without sea ice. Colors indicate the amplitude, arrows show the direction of flux higher than 10 W/m. Dots indicate the locations of the moorings across the continental slope.

- Baroclinic (internal) tidal waves are generated at the continental slope
- Baroclinic tides are strongest in summer (not shown)
- M₂ energy flux along the slope, due to critical latitude effects
- S₂ energy flux propagates into the deep basin
 - -> Qualitative pathway for S₂ energy to reach far offshore and **contribute to amplification**

Abstract ID: 5592

Conclusion

Summary

- Semidiurnal currents in the eastern EB are vigorous and highly baroclinic
- **Tides** dominate **during winters** and undergo vertical seasonal cycle correlated with sea ice
- Wind-driven inertial currents dominate during ice-free summers

Concluding remarks

- **Current** dynamics in the eastern Arctic have been **increasing** in recent years Inertial currents and tides directly interact with changing sea ice cover • Models need to adequately resolve baroclinic tides in order to capture this
- dynamic
- There is potential for **ecosystem changes** in the central basin through enhanced wind-driven and tidal mixing

