Regionalization of tropical cyclone impact functions

Samuel Eberenz (eberenzs@ethz.ch)
Samuel Lüthi
David N. Bresch

DOI:10.5194/egusphere-egu2020-5611
© Authors 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
Introduction: Beyond *the* singular global tropical cyclone impact function

Natural hazard risk assessments utilize impact functions to compute economic damage from hazard intensity and asset exposure.

Regional impact functions are scarce. In the case of tropical cyclones (TCs), curves calibrated for the USA are often applied globally.

This can lead to a substantial overestimation of regional TC impacts as compared to reported damage (c.f. world map).

Here, we fit and assess regionalized impact functions in a global TC impact modeling framework.

Regional total damage ratio (TDR): ratio between total simulated and reported tropical cyclone (TC) damage for each region. Based on the modeling of wind induced direct economic damage with a default impact function for 473 events, i.e. 376 TCs (red lines) making landfall in 53 countries in nine regions:

- **NA1:** the Caribbean with Central America and Mexico (red);
- **NA2:** the USA and Canada (blue);
- **NI:** North Indian Ocean (green);
- **OC:** Oceania with Australia (purple);
- **SI:** South Indian Ocean (orange);
- **WP1:** South East Asia (yellow);
- **WP2:** the Philippines (brown);
- **WP3:** China mainland (rose);
- **WP4:** East Asia (black).

Default (USA Impact function globally applied)
Data and Method: Assessing regionalized TC impact functions

Impact modeling

Weather and climate risk modeling platform
CLIMADA

Hazard
Wind fields modelled1,2,3 from 4098 unique TC tracks4 (1980-2017)

Exposure
Gridded physical asset value5 (as of 2014)

Vulnerability
Default impact function mapping wind speed to direct damage6 (calibrated for the USA)

Damage comparison

Reported damage
Direct economic damage7 per TC event and country (992 entries from 1980-2017)

Assigning: 473 matched data points* (damage per TC and country)

Simulated damage
Direct economic damage per TC event and country

Results

Damage Ratio
• EDR: ratio per event
• TDR: total ratio per region

Simulated Damage
Normalized Reported Damage

Regionalized Impact Functions
• Calibration by fitting impact functions per region based on EDR and TDR
• Uncertainty estimation based on spread of EDR

*) The 473 assigned TC events account for \textasciitilde58\% of global simulated TC damage based on all 4098 TC tracks from 1980-2017. Reported damage accounts for 76\% of total normalized reported TC damage over the same period of time (91\% before normalization).
Results: Damage comparison for 473 TC events

Default (USA Impact function globally applied)

Regionalized Impact Functions

Calibration

$R^2 = 0.26$

$R^2 = 0.34$
Results: Total damage ratio per region with regionalized impact functions

Regional total damage ratio (TDR): ratio between total simulated and reported tropical cyclone (TC) damage for each region. Based on the modeling of wind induced direct economic damage with regionalized impact functions for 473 events, i.e. 376 TCs (red lines) making landfall in 53 countries.
Discussion

- There is not the singular global TC impact function.
 While the default impact function works well for the North Atlantic, fitting a regional impact function improves results for other world regions, especially in East Asia and Africa.
 The regionalized impact functions will soon be published and made available within the open-source CLIMADA framework.

- The modeling of direct economic impacts from TCs based on wind speed as the only hazard type comes with regionally large uncertainties.
 In this study, TC hazard intensity is represented by wind speed alone. Whereas the impact model set-up returns robust results for the North Atlantic regions, we found an extensive spread both in EDR and calibrated impact functions for other regions. The largest uncertainties were found for the Philippines (region WP2) and China mainland (WP3).

- Sources of uncertainty are the hazard, exposure, and vulnerability components of the impact model; as well as the reported damage data.
 A case study for the Philippines reveals limitations of the TC impact modeling set-up and the impact function calibration. Uncertainties can be related to:
 1. the lack of an explicit representation of associated sub-perils such as storm surge, torrential rainfall, and landslides;
 2. differences in exposure and vulnerability between urban and rural areas.
 3. Furthermore, inaccuracy and potential biases in the reported damages are likely to be yet another relevant source of uncertainty.
References

